2014 Physics Education Research Conference

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>1</td>
</tr>
<tr>
<td>Conference Overview</td>
<td>3</td>
</tr>
<tr>
<td>Conference Program</td>
<td>4</td>
</tr>
</tbody>
</table>

PLENARY PAPERS

Apples vs. Oranges: Comparison of Student Performance in a MOOC vs. a Brick-and-Mortar Course
Michael Dubson, Ed Johnsen, David Lieberman, Jack Olsen, and Noah Finkelstein
9

Technology And Instructional Reform In STEM Education: Beyond the Classroom
James S. Fairweather
13

PEER REVIEWED PAPERS

Student Use of a Single Lecture Video in a Flipped Introductory Mechanics Course
John M. Aiken, Shih-Yin Lin, Scott S. Douglas, Edwin F. Greco, Brian D. Thoms, Marcos D. Caballero, and Michael F. Schatz
19

Spatial Reasoning Ability and the Construction of Integrals in Physics
Nathaniel R. Amos and Andrew F. Heckler
23

Design and Evaluation of a Natural Language Tutor for Force and Motion
Ryan Badeau and Andrew F. Heckler
27

Student Reasoning About the Divergence of a Vector Field
Charles Baily and Cecilia Astolfi
31

Understanding Women's Gendered Experiences in Physics and Astronomy Through Microaggressions
Ramón S. Barthelemy, Melinda McCormick, and Charles Henderson
35

Pwning Level Bosses in MATLAB: Student Reactions to a Game-Inspired Computational Physics Course
Ian D. Beatty and Lauren A. Harris
39

What Do Students Want? Small Group Instructional Diagnoses of STEM Faculty
Jennifer Blue, Gregg W. Wentzell, and Matthew J. Evins
43

Development and Evaluation of a Quantum Interactive Learning Tutorial on Larmor Precession Of Spin
Benjamin R. Brown and Chandralekha Singh
47

Comparing Traditional and Studio Courses through Gains and Losses
Jacquelyn J. Chini and Jarrad W. T. Pond
51
Learning Assistant Identity Development: Is One Semester Enough?
Jessica Conn, Eleanor W. Close, and Hunter G. Close

Development of an Interactive Tutorial on Quantum Key Distribution
Seth DeVore and Chandralekha Singh

Sensitivity of Learning Gains on the Force Concept Inventory to Students' Individual Epistemological Changes
Lin Ding

Network centrality and student self-efficacy in an interactive introductory physics environment
Remy Dou and Eric Brewe

Rubric Design For Separating The Roles Of Open-Ended Assessments
Leanne Doughty and Marcos D. Caballero

Peer Evaluation of Video Lab Reports in a Blended Introductory Physics Course
Scott S. Douglas, Shih-Yin Lin, John M. Aiken, Brian D. Thoms, Edwin F. Greco, Marcos D. Caballero, and Michael F. Schatz

Student Epistemologies in Project-based Learning Courses
Gintaras Duda and Kristina Ward

SCALE-UP Implementation and Intra-Institutional Dissemination: A Case Study of Two Institutions
Kathleen T. Foote, Xaver Neumeyer, Charles Henderson, Melissa Dancy, and Robert Beichner

Assessing Future Elementary Teachers' Pedagogical Content Knowledge in a Physics Class
Claudia Fracchiolla and N. Sanjay Rebello

Transformative Experiences and Conceptual Understanding of Force and Motion
Brian W. Frank and Paul Mittura

Student Satisfaction and Perceptions of Instructor Support in Studio Physics
Jon D. H. Gaffney and Amy L. Housley Gaffney

Efficacy of "A-La-Carte"Research-Based Curricular Elements
Kevin C. Goering and Elizabeth Gire

Investigating the Proposed Affordances and Limitations of the Substance Metaphor for Energy
Lisa M. Goodhew and Amy D. Robertson

Designing and Investigating New Ways of Interactive Whiteboard Use in Physics Instruction
Bor Gregorcic, Eugenia Etkina, and Gorazd Planinsic

Instructional Goals and Grading Practices of Graduate Students after One Semester of Teaching Experience
Charles Henderson, Emily Marshalman, Alexandru Maries, Edit Yerushalmi, and Chandralekha Singh

Use of Scientific Language by University Physics Students Communicating to the Public
Kathleen Hinko, Jordan Seneca, and Noah Finkelstein

The Impact of Targeting Scientific Reasoning on Student Attitudes about Experimental Physics
N. G. Holmes, Joss Ives, and D.A. Bonn
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring the Learning from Two-Stage Collaborative Group Exams</td>
<td>123</td>
</tr>
<tr>
<td>Joss Ives</td>
<td></td>
</tr>
<tr>
<td>A Case Study of a School District Assessment System and its Correlation with Student Performance in Physical Sciences</td>
<td>127</td>
</tr>
<tr>
<td>Angela M Kelly, Thea Charles, Minsu Ha, and Keith Sheppard</td>
<td></td>
</tr>
<tr>
<td>Learning About Educational Change Strategies: A Study of the Successful Propagation of Peer Instruction</td>
<td>131</td>
</tr>
<tr>
<td>Raina Khatri, Charles Henderson, Renee Cole, and Jeffery Froyd</td>
<td></td>
</tr>
<tr>
<td>Studio at CSM: Physics, Biology, and Beyond</td>
<td>135</td>
</tr>
<tr>
<td>Patrick B. Kohl, Eric S. Toberer, Judith N. Schoonmaker, H. Vincent Kuo</td>
<td></td>
</tr>
<tr>
<td>Investigating the Influence of Visualization on Student Understanding of Quantum Superposition</td>
<td>139</td>
</tr>
<tr>
<td>Antje Kohlne, Charles Baily, and Scott Ruby</td>
<td></td>
</tr>
<tr>
<td>Failure to Engage: Examining the Impact of Metacognitive Interventions on Persistent Intuitive Reasoning Approaches</td>
<td>143</td>
</tr>
<tr>
<td>Mila Kryjevskaia, MacKenzie R. Stetzer, and Thanh K. Le</td>
<td></td>
</tr>
<tr>
<td>Engaging Physics Faculty in Course Transformation</td>
<td>147</td>
</tr>
<tr>
<td>James T. Laverty, Stuart H. Tessmer, Melanie M. Cooper, and Marcos D. Caballero</td>
<td></td>
</tr>
<tr>
<td>Difficulties Understanding the Explicative Model of Simple DC Circuits in Introductory Physics Courses</td>
<td>151</td>
</tr>
<tr>
<td>Ane Leniz, Kristina Zuza, and Jenaro Guisasola</td>
<td></td>
</tr>
<tr>
<td>Studying Expert Practices to Create Learning Goals for Electronics Labs</td>
<td>155</td>
</tr>
<tr>
<td>H. J. Lewandowski, Noah Finkelstein, and Benjamin Pollard</td>
<td></td>
</tr>
<tr>
<td>Physics I MOOC - Educational Outcomes</td>
<td>159</td>
</tr>
<tr>
<td>David Lieberman, Michael Dubson, Ed Johnsen, Jack Olsen, and Noah Finkelstein</td>
<td></td>
</tr>
<tr>
<td>Peer Evaluation of Video Lab Reports in an Introductory Physics MOOC</td>
<td>163</td>
</tr>
<tr>
<td>Shih-Yin Lin, Scott S. Douglas, John M. Aiken, Chien-Lin Liu, Edwin F. Greco, Brian D. Thoms, Marcos D. Caballero, and Michael F. Schatz</td>
<td></td>
</tr>
<tr>
<td>Gender & LEAP Pedagogy: What Does The Gender Force Concept Inventory Have To Say?</td>
<td>167</td>
</tr>
<tr>
<td>Twanelle Walker Majors and Paula V. Engelhardt</td>
<td></td>
</tr>
<tr>
<td>Performance of Graduate Students at Identifying Introductory Physics Students’ Difficulties Related to Kinematics Graphs</td>
<td>171</td>
</tr>
<tr>
<td>Alexandru Maries and Chandralekha Singh</td>
<td></td>
</tr>
<tr>
<td>Developing an Interactive Tutorial on a Quantum Eraser</td>
<td>175</td>
</tr>
<tr>
<td>Emily Marshman and Chandralekha Singh</td>
<td></td>
</tr>
<tr>
<td>Promoting and Assessing Student Metacognition in Physics</td>
<td>179</td>
</tr>
<tr>
<td>Alistair McInerny, Andrew Boudreaux, Mila Kryjevskaia, and Sara Julin</td>
<td></td>
</tr>
<tr>
<td>The Impacts of Instructor and Student Gender on Student Performance in Introductory Modeling Instruction Courses</td>
<td>183</td>
</tr>
<tr>
<td>Daryl McPadden and Eric Brewe</td>
<td></td>
</tr>
</tbody>
</table>
University Students’ Reasoning on Physical Information Encoded in Quantum State at a Point in Time
Marisa Michelini and Giacomo Zuccarini 187

Learning about the Energy of a Hurricane System through an Estimation Epistemic Game
Bahar Modir, Paul W. Irving, Steven F. Wolf, and Eleanor C. Sayre 191

Students’ Participation And Its Relationship To Success In An Interactive Learning Environment
Binod Nainabasti, David T. Brookes, and Yuehai Yang 195

Testing Tutorials in Upper-Division: An Example from Quantum Mechanics
Gina Passante, Paul J. Emigh, and Peter S. Shaffer 199

Is it Disadvantageous to Teach Forces First in Mechanics?
Andrew Pawl 203

Examining the Use of PhET Interactive Simulations in US College and High School Classrooms
Katherine K. Perkins, Emily B. Moore, and Stephanie V. Chasteen 207

Exposure to Underrepresentation Discussion: The Impacts on Women's Attitudes and Identities
Geoff Potvin, Zahra Hazari, and Robynne M. Lock 211

An Effective Teaching/Learning Intervention on Time Dilation and Relativistic Dynamics
Emanuele Pugliese and Lorenzo Santi 215

The Impacts of Modeling Physics in Upper-Level Courses: The Persistence of Males and Females
Idaykis Rodriguez, Geoff Potvin, Eric Brewe, and Laird H. Kramer 219

Comparing Student Ability to Reason with Multiple Variables for Graphed and Non-Graphed Information.
Rebecca Rosenblatt 223

Experts’ Understanding of Partial Derivatives Using the Partial Derivative Machine
David Roundy, Eric Weber, Grant Sherer, and Corinne A. Manogue 227

Validation of a Conceptual Assessment Tool in E&M II
Qing X. Ryan, Cecilia Astolfi, Charles Baily, and Steven J. Pollock 231

Interdisciplinary Affinity: Definitions and Connections to Physics Identity
Tyler D. Scott, Zahra Hazari, Geoff Potvin, Philip M. Sadler, and Gerhard Sonnert 235

Developing an Interactive Tutorial on a Mach-Zehnder Interferometer with Single Photons
Chandrakekha Singh and Emily Marshman 239

Vector Addition in Different Contexts
Philip Southey and Saalih Allie 243

Multiple Representations and Epistemic Games in Introductory Physics Exam Solutions
Adrienne L. Traxler, Jonathan V. Mahadeo, Daryl McPadden, and Eric Brewe 247

Student Understanding of Circuit Loading in Physics and Engineering
Kevin L. Van De Bogart and MacKenzie R. Stetzer 251

From Fear to Self-Expression: The Contextual Nature of Physics Students’ Motivations
Ben Van Dusen and Valerie Otero 255
High School Science Experiences Associated to Mastery Orientation Towards Learning
Katrina Velez, Geoff Potvin, and Zahra Hazari 259

The Role of Student Reflection in Project-based Learning Physics Courses
Kristina Ward and Gintaras Duda 263

Bottlenecks in Solving Synthesis Problems
Daniel R. White, Ryan Badeau, Andrew F. Heckler, and Lin Ding 267

Student Difficulties with the Dirac Delta Function
Bethany R. Wilcox, Steven J. Pollock 271

Just Math: A New Epistemic Frame
Steven F. Wolf, Leanne Doughty, Paul W. Irving, Eleanor C. Sayre, and Marcos D. Caballero 275

Effect of Problem Solutions on Students' Reasoning Patterns on Conceptual Physics Problems
Xian Wu, Tianlong Zu, Elise Agra, and N. Sanjay Rebello 279

A Study of Informal Learning Communities: a Tale of Two Physics Courses
Yuehai Yang, Binod Nainabasti, David T. Brookes, and Eric Brewe 283

Grading Practices and Considerations of Graduate Students at the Beginning of their Teaching Assignment
Edit Yerushalmi, Emily Marshman, Alexandru Maries, Charles Henderson, and Chandralekha Singh 287

Making Models of Measurement Tools: Examples from Think-Aloud Student Interviews
Benjamin M. Zwickl, Dehui Hu, Noah Finkelstein, and H. J. Lewandowski 291

Revealing Differences Between Curricula Using the Colorado Upper-Division Electrostatics Diagnostic
Justyna P. Zwolak and Corinne A. Manogue 295

List of Participants and E-mail Addresses 299

Index 302
PREFACE

The theme of the 2014 Physics Education Research Conference was “Outpacing New Technologies with Novel Pedagogies: The Role of PER in the Transforming Landscape of Higher Education.” This conference highlighted the interaction of educational technologies with new pedagogical approaches to classroom teaching such as MOOC, flipped classrooms and online courses. The roughly 305 conference attendees were encouraged to gain a deeper understanding of these technology-driven classroom environments and to consider how physics education researchers can guide and assess these environments. This year’s conference presented 162 contributed posters over two sessions, six symposium sessions with 32 poster presentations, a workshop on Raising Calculus to the Surface in Physics: Explorations using Surfaces, and three roundtable discussions on Flipped Physics Teaching, Competency-Based Assessment: Goals and a Research Agenda, and the Utility and Prospects of Computers Coaching Students in Physics.

This year’s AAPT/PERC Bridging Session highlighted work by Mike Dubson on “Apples vs. Oranges: Comparison of Student Performance in a MOOC vs. a Brick-and-Mortar Course” and Jim Fairweather on “Technology And Instructional Reform In STEM Education: Beyond the Classroom.” In addition to their papers, many contributed papers in this volume also address this year’s theme with the remainder representing the diversity of directions within PER which help this volume fulfill its purpose of providing an annual snapshot of the field.

The Editors thank this year’s conference organizers Danny Caballero, Mats Selen, and Tim Stelzer, the American Association of Physics Teachers (AAPT), and the Physics Education Research Leadership and Organizing Council (PERLOC) for putting together yet another successful and well-run meeting.

This marks the second year that the Proceedings will be published on-line through comPADRE with sponsorship by the American Association of Physics Teachers. The Proceedings’ online submission process for contributed papers and referee reports are supported each year by Lyle Barbato and Bruce Mason who work closely with the PERC Proceedings Editors to make improvements to the system and ensure that everything runs smoothly. We wish to thank Lyle and Bruce for their excellent work and ongoing commitment to the PER community and the PERC Proceedings.

Last but not least, this volume owes its existence to the referees, who volunteer their time and expertise to help improve the quality of the papers published in the Proceedings. This year we had 134 reviewers who reviewed the 103 papers submitted to the Peer Reviewed Section.

The Editors thank:

Elise Agra, John Aiken, Saalih Allie, Nathaniel Amos, Cecilia Astolfi, Gordon Aubrecht, II, Ryan Badeau, Charles Baily, Ramón Barthelemy, Ian Beatty, Robert Beichner, Jennifer Blue, Scott Bonham, Andrew Boudreaux, Andre Bresges, Eric Brewe, David Brookes, Benjamin Brown, Juan Burciaga, Marcos Caballero, Ying Cao, Stephanie Chasteen, Jacquelyn Chini,

See you next summer in Baltimore!

Paula V. Engelhardt
Outgoing Editor
Conference Overview

Outpacing New Technologies with Novel Pedagogies: The Role of PER in the Transforming Landscape of Higher Education

Students' unprecedented access to information on-line is dramatically and irreversibly transforming higher education. This transformation provides fantastic opportunities to improve education, but at the same time we are presented with the equally fantastic risk of losing the core elements that make higher education so valuable. Whether it has been on-line homework, electronic voting systems, or screen-casted lectures, the physics community has been on the bleeding edge of new educational technology.

Our community must engage in a scholarly dialog around these new environments including the opportunities they afford, the challenges they present, and the research enterprise necessary to address these. The opportunities for access and equity in MOOC, on-line, hybrid, and flipped classrooms, as well as the challenges these new educational models present for engagement, assessment, and community development are all important aspects to consider. Conference participants will gain deeper insight into these technologically-driven environments by discussing the magnitude and rapidity of these changes, developing an understanding of the national dialog around on-line education, and discussing how physics education research can guide the development of new pedagogies for and assessments of these environments. We are grateful to all of the speakers, session organizers and participants for creating such an exciting and thought-provoking conference.

Organizers:

Danny Caballero, Michigan State University
Mats Selen, University of Illinois at Urbana-Champaign
Tim Stelzer, University of Illinois at Urbana-Champaign

The organizing committee of the PERC 2014 would like to express gratitude to the following individuals for their invaluable assistance in creating this conference:

The plenary speakers: Michael Dubson, James Fairweather, Ken Koedinger, and Carl Wienman; Lyle Barbato and Bruce Mason with ComPADRE; Tiffany Hayes, Cerena Cantrell, Janet Lane, and Pearl Watson from AAPT; and the PERC Proceedings Editors: Paula Engelhardt, Alice Churukian and Dyan Jones.
Program

WEDNESDAY, JULY 30

3:00 – 4:30 pm | BRIDGING SESSION
Northrop Auditorium | Speaker: **Mike Dubson**
 | Apples and Oranges: Comparing a MOOC with a Standard Class

Speaker: **Jim Fairweather**
Technology and Instructional Reform in STEM Education: Beyond the Classroom

5:00 – 6:30 pm | BANQUET AND KEYNOTE
Meridian Ballroom | Speaker: **Ken Koedinger**
 | From Cognitive Science to Physics Education and Back

7:00 – 8:30 pm | CONTRIBUTED POSTER SESSION I
Meridian | Odd-numbered posters: 7:00 – 7:45 pm
Foyer/Summit | Even-numbered posters: 7:45 – 8:30 pm

THURSDAY, JULY 31

8:30 – 10:00 am | CONTRIBUTED POSTER SESSION II
Meridian | Odd-numbered posters: 8:30 – 9:15 am
Foyer/Summit | Even-numbered posters: 9:15 – 10:00 am

10:30 – 12:00 am | PARALLEL SESSION I
Pathways | Getting Involved in Online PER
Think 4 | Reform expansion beyond a single classroom
Pinnacle | Gender issues in introductory physics: Recruitment, performance, and retention
Inventor 1 | Raising Calculus to the Surface in Physics: Explorations using Surfaces
Think 3 | The utility and prospects of computers coaching students in physics

12:00 – 1:30 pm | LUNCH

1:30 – 3:00 pm | PARALLEL SESSION II
Pathways | Competency-Based Assessment: Goals and a Research Agenda
Think 4 | Game-Based and Game-Informed Approaches to Physics Instruction
Pinnacle | Using technology to enhance physics teaching: Research-based technology innovations
Inventor 1 | Flipped Physics Teaching
Think 3 | Instructional Goals and Research Methods in the International PER community: A GIREP Symposium

3:30pm - 4:15pm | PLENARY SUMMARY TALK
Meridian Ballroom | Speaker: **Carl Wieman**
 | A Synthesis and Wrap Up of PERC 2014
Apples and Oranges: Comparing a MOOC with a Standard Class

Michael Dubson, University of Colorado at Boulder

In the Fall of 2013, we taught Physics 1 (Calc-based Mechanics) to 800 tuition-paying freshmen at the University of Colorado at Boulder. Almost simultaneously, we taught a MOOC version of the course, through Coursera, to an initial audience of 15,000 students from around the world. We made the two versions of the course as similar as possible. The MOOC students saw the same lectures, with the same Concept Tests, received the same homework assignments, and took the same exams with same time constraints, as the students in the brick-and-mortar course. The physics background knowledge FMCE pre-test scores of the two groups were remarkably similar, but less than 2% of those enrolled in the MOOC had the grit to complete the course. Those gritty 2% performed almost as well as our CU freshmen students with matching pretest scores.

Technology and Instructional Reform in STEM Education: Beyond the Classroom

James Fairweather, Michigan State University

Research in postsecondary education has focused on the pedagogical effectiveness of technology in the classroom. Most relevant literature focuses on students’ cognitive development, professional development of faculty members, and course and curricular translation into digital platforms. The AAU Initiative for the Reform of Undergraduate Education shows that many of the factors affecting the successful use of technology in STEM education lie beyond individual faculty members and students. Reward structures that influence faculty time allocation are set at the institutional level. Administrators select educational software to control costs rather than to maximize learning. This presentation draws on recent experience with the AAU Initiative to describe the variety of factors potentially affecting faculty and student use of technology in teaching and learning.
Active Learning Works: What Next? How technology can help develop better learning theory and applications

Kenneth R. Koedinger, Carnegie Mellon University

Learning by doing has long history of proponents from John Dewey through Herbert Simon to many contemporary discipline-based education researchers, especially in physics education. We can build on this history by not only applying relevant theory in course designs and evaluation, but by also adding to theory of what active learning strategies work, why they work, and under what circumstances. I present an analysis of instructional complexity indicating 30 dimensions of instructional design options that, when combined, produce trillions of possible instructional choices. We need more theory to understand when “active” methods are not helpful, when certain “passive” methods are, and what are the best combinations given the specific nature of the cognitive processes we want our course to change. I illustrate the use of cognitive task analysis methods to develop cognitive models that guide the design of instructional materials including advanced educational technologies. I will discuss examples of such technologies that have not only been a way to personalize and scale active learning methods, but they have also provided a scientific instrument to help advance learning theory.

A Synthesis and Wrap Up of PERC 2014

Carl E. Wieman, Stanford University