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Learning physics is challenging at all levels. Studentsô difficulties in the introductory level 

physics courses have been widely studied and many instructional strategies have been developed 

to help students learn introductory physics. However, research shows that there is a large 

diversity in studentsô preparation and skills in the upper-level physics courses and it is necessary 

to provide scaffolding support to help students learn advanced physics. This thesis explores 

issues related to studentsô common difficulties in learning upper-level undergraduate quantum 

mechanics and how these difficulties can be reduced by research-based learning tutorials and 

peer instruction tools. We investigated studentsô difficulties in learning quantum mechanics by 

administering written tests and surveys to many classes and conducting individual interviews 

with a subset of students. Based on these investigations, we developed Quantum Interactive 

Learning Tutorials (QuILTs) and peer instruction tools to help students build a hierarchical 

knowledge structure of quantum mechanics through a guided approach. Preliminary assessments 

indicate that studentsô understanding of quantum mechanics is improved after using the research-

based learning tools in the junior-senior level quantum mechanics courses. We also designed a 

standardized conceptual survey that can help instructors better probe studentsô understanding of 

quantum mechanics concepts in one spatial dimension. The validity and reliability of this 

quantum mechanics survey is discussed.  
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1.0  INTRODUCTION  

Helping students to think like physics experts is an important goal of most physics courses. But 

learning physics is difficult for students at all levels from the introductory to the advanced. Even 

in the introductory physics courses, students must draw meaningful inferences from the abstract 

principles, which are in highly compact mathematical form, and apply the few fundamental 

principles in diverse situations. Such tasks may be routine for the experts in physics but can be 

very challenging for the students. A lot of prior research has been conducted on investigating the 

differences between introductory physics students and physics experts in problem solving, 

reasoning and meta-cognitive skills (Maloney 1994, Chi et al. 1981, Touger et al. 1995). In 

general, experts start solving problems at a more abstract level and later turn to the specifics, 

while the novices may immediately focus on the surface features and get distracted. Experts can 

apply their knowledge in novel and complex problems depending on the level of their expertise, 

while novices may only be able to solve familiar problems requiring routine procedures. Experts 

have knowledge structure which is organized hierarchically, while novicesô knowledge structure 

lacks hierarchical organization.   

Novicesô difficulties in introductory physics have been widely studied and many 

instructional strategies have been developed to help introductory physics students acquire the 

content knowledge as well as the ability to solve problems in novel situations (Leonard et al. 

1996, Heller and Reif 1984, Van Heuvelen 1991, Mestre et al. 1993, Dufresne et al. 1992). 
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However, it is often assumed that the students in the upper-level physics courses have 

significantly higher expertise in learning and self-monitoring than those who have only studied 

introductory physics. Instructors usually take for granted that advanced physics students are 

independent learners with necessary cognitive and meta-cognitive skills and enough prior 

knowledge in introductory and intermediate physics. However, advanced students face additional 

challenges because they must build the upper-level physics knowledge on all of the prior 

knowledge acquired at the introductory and intermediate levels. Research also suggests that there 

is a wide diversity in advanced studentsô skills such as their ability to categorize physics 

problems based upon similarity of solution or their tendency to exploit their mistakes as an 

opportunity for repairing and organizing their knowledge structure (Lin & Singh 2009, Lin & 

Singh 2010, Mason & Singh 2009, Mason & Singh 2010). Therefore, while teaching upper-level 

physics courses, treating all the advanced students as a group of experienced learners will not 

lead to designing of effective instructional strategies and scaffolding support to help them 

become physics experts.  

Indeed, once we are familiar with the prior knowledge of upper-level students, we can 

consider effective strategies to help them build on their prior knowledge and construct a 

hierarchical knowledge structure and develop skills in applying relevant knowledge in various 

situations. An important question is the following: Will the educational methods and techniques 

that have been effective in introductory physics courses be effective in the upper-level courses as 

well? In this thesis, I will discuss my research on studentsô difficulties in learning upper-level 

undergraduate quantum mechanics and the impact of incorporating tutorial-based instruction and 

peer-instruction tools in helping students learn better.  
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In particular, I will discuss how the findings of cognitive research and Physics Education 

Research (PER) in introductory physics can guide the investigation of studentsô difficulties and 

strategies to help students learn quantum mechanics better. In the remaining paragraphs of 

chapter 1, I will first provide some motivation for why quantum mechanics is so difficult for the 

advanced students to learn and then introduce the cognitive issues and educational strategies that 

take into account the findings of learning theories that can help students learn quantum 

mechanics better. In chapter 2 to chapter 7, I will summarize and categorize studentsô difficulties 

and misconceptions about quantum mechanics related to topics such as ñPossible 

Wavefunctionsò, ñBound and Scattering Stateò, ñDrawing Wavefunctionsò, ñQuantum 

Measurementò, ñStern-Gerlach Experimentò, ñAddition of Angular Momentumò, etc. Based 

upon the findings of investigation of studentsô difficulties, we developed a set of research-based 

learning tutorials called the Quantum Interactive Learning Tutorials (QuILTs) and peer 

instruction tools, e.g., concept tests, to scaffold student learning of quantum mechanics and help 

them construct a hierarchical knowledge structure. The details of the development, 

implementation and findings of these research-based QuILTs and peer-instruction tools will be 

elaborated in chapters 2 to 8. In the ninth chapter, I will discuss the development and preliminary 

assessment of a standardized survey that can help instructors better probe studentsô conceptual 

understanding of quantum mechanics in their classes.  Then, conclusions and future directions 

will be outlined in the final chapter.  
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1.1 QUANTUM MECHANICS VS. CLASSICAL MECHANICS  

Quantum mechanics (QM) is an important topic in the physics curriculum and it is also 

important for students majoring in other sciences, e.g., chemistry or engineering, e.g., electrical 

engineering. Students who are interested in the basic rules governing the universe beyond 

Newtonian physics are often fascinated by quantum mechanics. However, quantum mechanics 

formalism is abstract and does not conform to the everyday world we are used to in which 

position and momentum are deterministic variables and their time evolution is governed by 

Newtonôs laws. Quantum phenomena cannot be explained in classical ways. Talented students 

have great difficulty in mastering the fundamental concepts and principles of quantum 

mechanics. Richard Feynman said ñnobody understands quantum mechanicsò (Feynman, 1965). 

Feynmanôs statement was referring to the difficulty in interpreting the foundational issues in 

quantum mechanics rather than the difficulty in performing a calculation based upon quantum 

mechanics formalism. However, it is important to research effective strategies to help students 

learn the standard formalism of quantum mechanics.  

As noted earlier, unlike classical mechanics, we do not have direct experience with the 

microscopic quantum world. Also, quantum mechanics has an abstract theoretical framework in 

which the most fundamental equation, the Time-Dependent Schrödinger Equation (TDSE), 

describes the time evolution of the wave function or the state of a quantum system according to 

the Hamiltonian of the system. This wave function is in general complex and does not directly 

represent a physical entity. However, the wave function at a given time can be exploited to make 

inferences about the probability of measuring different physical observables associated with the 

system. For example, the absolute square of the wave function in position-space is the 

probability density for position measurement. Since the TDSE does not describe the evolution or 
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motion of a physical entity, unlike Newton's second law, the modeling of the microscopic world 

in quantum mechanics is generally more abstract than the modeling of the macroscopic world in 

classical mechanics. 

Quantum theory provides a coherent framework for reasoning about microscopic 

phenomena and has never failed to explain observations if the Hamiltonian of the system is 

modeled appropriately to account for the essential interactions. However, the conceptual 

framework of quantum mechanics is often counter-intuitive to our everyday experiences. For 

example, according to the quantum theory, the position, momentum, energy and other 

observables for a quantum mechanical entity are in general not well-defined. We can only 

predict the probability of measuring different values based upon the wave function when a 

measurement is performed. This probabilistic interpretation of quantum mechanics, which even 

Einstein found disconcerting, is challenging for students. Moreover, according to the 

Copenhagen interpretation of quantum mechanics, which is widely taught to students, the 

measurement of a physical observable changes the wave function if the initial wave function is 

not an eigenfunction of the operator corresponding to the observable measured. Thus, the usual 

time evolution of the system according to the TDSE is separated from what happens during the 

measurement of an observable. Students often have difficulty with this notion of an 

instantaneous change or "collapse" of the wave function during the measurement. 

In quantum theory, position and momentum are not independent variables that evolve in a 

deterministic manner but are operators in the Hilbert space in which the state of the system is a 

vector. For a given state of the system, the probabilities of measuring position or momentum in a 

narrow range depend on each other. In particular, specifying the position-space wave function 

that can help us determine the probability of measuring the position in a narrow range specifies 
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(via a Fourier transform) the momentum-space wave function that tells us the probability of 

measuring the momentum in a narrow range. The eigenstates of the position or momentum 

operators span the Hilbert space so that any state of the system can be written as a linear 

combination of a complete set of position eigenstates or momentum eigenstates. The 

measurement of position (or momentum) yields a position (or momentum) eigenvalue with a 

certain probability depending upon the state of the system. These concepts are indeed 

challenging for students since they do not conform to the experiences in the classical world 

(Singh 2007). 

In addition to the lack of direct exposure to microscopic phenomena described by 

quantum theory and the counter-intuitive nature of the theory, the mathematical facility required 

in quantum mechanics can increase studentsô cognitive load and make learning quantum 

mechanics even more challenging. The framework of quantum mechanics is based on linear 

algebra. In addition, a good grasp of differential equations, special functions, complex variables, 

etc., is highly desired. If students are not facile in relevant mathematics, they may become 

overwhelmed by the mathematical details and may not have the opportunity to focus on the 

conceptual framework of quantum mechanics and build a coherent knowledge structure. Earlier 

research (Singh 2007) shows that a lack of mathematical facility can hinder conceptual learning. 

Similarly, alternative conceptions about conceptual aspects of quantum mechanics can lead to 

students making mathematical errors that they would otherwise not make in a linear algebra 

course (Singh 2007). 

Many of the alternative conceptions in the classical world are over-generalizations of 

everyday experiences to contexts where they are not applicable. For example, the conception that 

motion implies force often originates from the fact that one must initially apply a force to an 
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object at rest to get it moving. People naively over-generalize such experiences to conclude that 

even an object moving at a constant velocity must have a net force acting on it. One may argue 

that quantum mechanics may have an advantage here because the microscopic world does not 

directly deal with observable phenomena in every day experience so students are unlikely to 

have alternative conceptions. Unfortunately, that is not true and research shows that students 

have many alternative conceptions about quantum physics (in the level of modern physics) and 

quantum mechanics (McKagan et al. 2008(a), McKagan et al. 2008(b), McKagan et al. 2008(c), 

McKagan et al. 2009, Jolly et al. 1998, Singh et al. 2006, Wittmann et al. 2002, Zollman et al. 

2002, Styer 1996, Johnston et al. 1998, Ireson 2000, Bao and Redish 2002, Carr and McKagan 

2009, Fischler et al. 1992, Redish et al. 2001, and the theme issue of American Journal of 

Physics 2002). These alternative conceptions are often about the quantum mechanical model 

itself and about exploiting this model to infer what should happen in a given situation. Students 

often over-generalize their intuitive notions from the classical world to the quantum world, 

which can lead to incorrect inferences. 

1.2 A SHORT REVIEW OF RE LEVANT PHYSICS EDUCA TION RESEARCH 

(PER) 

Physics education research is discipline-based research conducted mostly by physicists with 

knowledge of physics and access to students. It became an established field of research in the 

physics departments in the United States in the late twentieth century. In the 1980s through the 

1990s, the famous test to assess studentsô conceptual understanding of introductory physics, the 

Force Concept Inventory (FCI) (Hestenes et al. 1992; Hestenes & Halloun 1995), made 
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physicists realize that despite their sincerest effort, solely teaching via lectures is not effective in 

helping students learn physics. They found that their students lacked conceptual understanding of 

physics even though they could solve complicated quantitative problems using a rote algorithmic 

approach. The number of physicists doing PER and developing and assessing research-based 

instructional strategies has grown steadily over the last few decades. In 1999, the American 

Physics Society (APS) published the ñStatement on Research in Physics Educationò, which 

announced the usefulness and the validity of PER in physics departments (Beichner, 2009). In 

2005, the Physical Review series welcomed a new journal, Physical Review Special Topicsð

Physics Education Research, indicating that PER formally became an essential part of scientific 

research in physics. 

Physics education research generally focuses on two areas, the basic PER and the applied 

PER (Beichner, 2009). The basic PER concerns the assessment and determination of studentsô 

difficulties in understanding physics concepts and the applied PER focuses on developing 

effective teaching strategies or instructional materials to help students overcome their common 

difficulties and build a robust knowledge structure of physics. My research on improving 

studentsô understanding of quantum mechanics involves both basic and applied PER. We have 

conducted in-depth research on studentsô difficulties and revealed not only the misconceptions 

that students have but also unpacked how these misconceptions originate. Based on our research 

on studentsô common difficulties in learning quantum mechanics, we have designed the 

Quantum Interactive Learning Tutorials (QuILTs) and peer-instruction tools such as concept 

tests to improve studentsô understanding. 
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1.3 COGNITIVE ISSUES IN PER 

PER has an active interaction with cognitive science. PER uses the theory of cognitive science as 

an important source for interpreting student learning of physics. Cognitive principles are also 

useful for the PER researchers in developing and assessing instructional strategies. On the other 

hand, PER adds to the cognitive research because cognition issues such as metacognition or the 

nature of expertise can be researched via PER since physics is a domain in which expertise can 

be assessed more readily than in the social sciences or humanities. While investigating studentsô 

difficulties in learning quantum mechanics and developing research-based learning tools, we 

took into account findings of cognitive research such as those related to memory, metacognition 

and epistemology, in order to interpret studentsô reasoning processes and learning outcomes after 

interventions with QuILTs and peer-instruction tools. Our research is informed by the research of 

many cognitive and social scientists. In developing research-based learning tools, several 

cognitive theories and models are carefully integrated, e.g., Piagetôs ñoptimal mismatchò, 

Vygotskyôs ñzone of proximal developmentò, and the Preparation for Future Learning model of 

Bransford and Schwartz which is based upon the notions of ñefficiency vs. innovationò (Smith 

1985, Piaget 1964, Raymond 2000, Bransford & Schwartz 1999, Schwartz et al. 2005). Below, I 

review some of the relevant concepts from cognitive science that have helped inform my 

research. 

1.3.1 Memory 

In cognitive science, memory refers to the brainôs ability to store, retain and retrieve information. 

Human memory consists of two major components: short-term memory (or working memory) 



 10 

and long-term memory (Simon, 1974). In his famous paper about ñthe magic number seven, plus 

or minus twoò, Miller claimed that the storage ability of short-term memory is limited to 5 to 9 

bits, where one bit of information is defined as ñthe amount of information that we need to make 

a decision between two equally likely alternativesò (Miller, 1956). Due to the limitation of short-

term memory, people cannot process many disparate bits of information at the same time. The 

short-term memory processes the information for a period of around 18 seconds without 

repetitive practice and rehearsal (Peterson and Peterson, 1959). The long-term memory is where 

the information is stored and this information can last from a few days to even a life-time. The 

capacity of long-term memory can be considered as unlimited unlike the short term memory 

which is used to process the information. Information processing and problem solving happens in 

short term memory or working memory which receives information from the sensory buffers 

(e.g., ears, eyes, hands) and also from the long term memory.   

Later research shows that the capacity of the short-term memory can be increased by 

chunking the information into meaningful groups. For example, a ten-digit number is difficult to 

remember. But people can often memorize a phone number by dividing the string into three ñ3 

digits ï 3 digits ï 4 digitsò chunks so that each chunk of digits has a specific association (e.g., the 

area code). Research has also shown that expertise in a particular domain involves having large 

chunks of knowledge in the domain in which the person has expertise. In a study involving 

positions of chess pieces in a good game of chess (Chase & Simon, 1973), the chess masters 

could reproduce the setup of a chess game faster and more accurately than novices because they 

could chunk the relative positions of the pieces into offensive and defensive patterns when 

observing a good game board. However, these same experts in chess showed no more advantage 

over the novice if the setup was just a random positioning of the pieces on the chess board. These 
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findings are relevant for my research because it is important to investigate the prior knowledge 

of students and help them build on this prior knowledge and assist them in chunking relevant 

knowledge during the learning process.  

Information stored in the long-term memory can be retained longer and retrieved faster 

by practicing and creating associations. People forget what they learned at a rate which is 

exponential (known as the Ebbinghaus forgetting curve). Research shows that spaced practice 

and manipulation of repetition time are effective for retaining and retrieving knowledge 

(Landuaer & Bjork 1978, Melton 1970). Therefore, in the research-based learning tools I have 

developed for QM, the questions about key concepts occur not only in the sections in which they 

are introduced but also in the later sections to provide spaced practice. 

While solving a problem, after receiving information from the sensory buffers, the short-

term memory searches for the relevant knowledge in the long-term memory. Developing 

associations between different concepts and principles and building a robust knowledge structure 

provide additional links and pathways to activate relevant information during the problem 

solving process. For example, the momentum operator pĔ in one dimension can be represented 

by the derivative xi µµ- />  in the position space, and the Hamiltonian operator of a system can 

be written as  )(/)2/(Ĕ 222 xVxmH +µµ-= > . If a student knows that the Hamiltonian operator 

corresponds to the total energy of the system, which equals the kinetic energy plus the potential 

energy, then he/she only needs to remember the representation of the momentum operator and 

the definition of the Hamiltonian. The mathematical representation of the Hamiltonian can be 

constructed with this knowledge. Association of knowledge also helps people to better chunk the 

information and often this chunking happens subconsciously. In introductory physics, the 

symbols v and m are often associated with the concepts of speed and mass, which are also 
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associated with the concept of momentum. While a novice in physics may treat speed, mass, 

velocity and momentum as four different bits and they may take four slots in the short term 

memory, for an expert physicist all these related concepts may be chunked and may only take 

one slot in the short terms memory. Thus, an expert can use his/her ñcompiled knowledgeò and 

only one bit to process information about momentum without realizing that he/she has already 

processed a lot of related concepts.  While developing learning tools for Quantum Mechanics, we 

always do a theoretical task analysis which amounts to making a fine-grained flow chart of all 

the relevant concepts that need to be invoked to solve the problem. Then we analyze the 

difficulty of the concepts from studentsô perspective because the difficulty of a problem not only 

depends on its inherent complexity but on the familiarity and intuition one has developed about it. 

1.3.2 Metacognition & Epistemology  

Metacognition is the ñcognition of cognitionò or ñknowing about knowingò as referred in 

Metcalfe & Shimamuraôs book (Metcalfe & Shimamura 1994). For example, people are engaged 

in metacognition if they discern that they have more difficulties in learning one concept than 

another or if they decide to re-examine some information before they accept it as a fact (Flavell, 

1976 p.232). Development of metacognitive skills such as reflection and self-awareness in the 

problem solving process must be addressed while students are learning physics content. Several 

researchers have investigated the factors that can influence the development of reasoning and 

metacognitive skills (Yerushalmi & Eylon 2003, Scott et al. 2007). Moving beyond an 

algorithmic plug and chug approach and focusing on conceptual understanding can help students 

develop metacognitive skills (Leonard et al. 1996). In the research-based learning tools we have 

developed for quantum mechanics, e.g., to help students learn about quantum measurement, and 
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to help them sketch a possible bound or scattering state wave function for a given potential 

energy, we emphasize the development of conceptual reasoning and metacognitive skills and 

help students focus on their knowledge structure.  

Epistemology is the theory of knowledge which attempts to make sense of the human 

intellectual achievement (Cruz 2006). Research has shown that studentsô epistemological beliefs 

about physics can significantly affect what students learn (Hammer 2000; Schommer 1990, 

Redish et al. 1998, Adams et al. 2006, Gray et al. 2008). If students believe that physics is a 

collection of isolated formulas and facts, they will be reluctant to take the time to hierarchically 

organize their knowledge structure. Likewise, if students believe that their task in a physics class 

is to take notes, memorize facts and do plug and chug in the exams, they will make little effort to 

synthesize the content, build connections between new and prior knowledge, extend their 

knowledge to new areas and contemplate how principles of physics explain physical phenomena. 

It is indeed impossible for a student without a productive epistemology about the knowledge of 

physics to become an expert in physics. The research-based instructional tools I have developed 

for quantum mechanics keep students actively engaged in the learning process and force them to 

pay attention to the structure of knowledge in quantum mechanics. The learning tools help 

students realize that despite the abstractness of the subject matter, quantum mechanics is not a 

collection of incoherent facts and formulas. Students can also learn about how quantum 

mechanics can be applied to accomplish novel tasks that cannot be accomplished by classical 

means, e.g., to send a secret key for encoding and decoding data securely over a public channel.  
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1.3.3 Optimal Mismatch.  

Instructors can pose tasks to students in which common difficulties and misconceptions are 

elicited and then students observe something that contradicts their initial prediction (Smith, 

1985). Piaget emphasized ñoptimal mismatchò between what the student knows and where the 

instruction should be targeted in order for desired assimilation and accommodation of knowledge 

to occur. Piagetôs notion of ñoptimal mismatchò argues that when students encounter a cognitive 

conflict since their predictions and observations do not match, they are in a state of 

disequilibrium and they realize that there is some inconsistency in their reasoning (Piaget 1964, p. 

29). In this state, students are generally eager to resolve the discrepancies between their 

prediction and observation. Piaget suggested that at this point students should be provided with 

appropriate guidance and support commensurate with their prior knowledge to resolve the 

discrepancies and assimilate and accommodate appropriate concepts.   

Not only should students be helped to understand why the relevant concepts are 

applicable but also why their initial reasoning was not appropriate in that context. When learning 

quantum mechanics with the research-based learning tools, students are often asked to predict 

what should happen in different situations and then they use visualization tools such as computer 

simulations or graphical demonstrations to examine what actually happens. If their predictions 

are inconsistent with their observation, they are in a state of disequilibrium. Then, the learning 

tools provide scaffolding to help them resolve the discrepancies and help them build a robust 

knowledge structure. 
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1.3.4 Zone of Proximal Development (ZPD) 

 

The concept of the zone of proximal development (ZPD) was originally developed by Vygotsky 

in the early twentieth century. The definition of ZPD is commonly accepted as ñthe distance 

between what children can do by themselves and the learning that they can be helped to achieve 

with competent assistanceò (Raymond 2000 p.176). Thus, Vygotsky's notion of the ñzone of 

proximal developmentò refers to what a student can do on his/her own vs. with the help of an 

instructor who is familiar with his/her prior knowledge and skills. Scaffolding is at the heart of 

ZPD and can be used to stretch a student's learning far beyond his/her initial knowledge by 

carefully crafted instruction which is designed to ensure that the student makes desired progress 

and gradually develops independence. With awareness of students' initial knowledge state, the 

instructor can continuously target instruction a little bit above students' current knowledge state 

to ensure that the students have the opportunity and ability to connect new knowledge with what 

they already know and build a robust knowledge structure. 

Similar to the optimal mismatch theory, the ZPD theory emphasizes the importance of 

building studentsô knowledge structure based on their prior knowledge. Teachers need to provide 

scaffolding support to stretch studentsô learning process and help them overcome the gaps 

between their current knowledge and the new knowledge they are expected to acquire. 

Since all students in the advanced courses such as quantum mechanics may not have the 

same preparation and prior knowledge, it is important to align the learning tools to meet the 

needs of a diverse group of students. To prepare everyone for the QuILTs, we have designed 

warm-up materials that students can do at their own pace at home. The warm-up helps students 

review the necessary preliminary knowledge before they start using the QuILT involving the 
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quantum concepts recently learned. For example, in the QuILT related to the Stern-Gerlach 

experiment, the warm-up material asks the students to consider the basic concepts such as the 

Hamiltonian of a particle with a magnetic dipole moment in an external magnetic field, the 

forces acting on the magnetic dipole moment in a magnetic field in a classical situation, the 

matrix representation of the angular momentum, etc. By working on the warm-up materials, 

students are likely to have similar prior knowledge before working on the QuILTs.  

As stated in chapter 1.3.1, there are only 5 to 9 bits in oneôs short term memory (or 

working memory) but the size of the ñbitò or chunk can be different depending upon a personôs 

expertise in that domain. Therefore, it is important to be familiar with studentsô prior knowledge 

and have an understanding of what constitutes a bit for them so that they do not have a cognitive 

overload. One strategy to reduce the cognitive load is having students work with each other 

because according to  the theory of distributed cognition, the cognitive load it shared between 

individuals working together. In other words, combined working memory is available for 

problem solving and learning. The instructional method involving peer learning that can scaffold 

student learning will be elaborated in the section on peer instruction (chapter 1.5). 

1.3.5 Preparation for Future Learning  

In the 1990s, Bransford and Schwartz carried out a series of research on transfer of learning from 

one situation to another (Bransford & Schwartz 1999) and proposed a framework for scaffolding 

student learning. They theorized that the preparation for future learning (PFL) and transfer of 

knowledge from the situation in which it was acquired to new situations are optimal if instruction 

includes both the elements of innovation and efficiency. In their model, efficiency and 

innovation are two orthogonal coordinates. If instruction only focuses on efficiency, the 
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cognitive engagement and processing by the students will be diminished and they will not 

develop the ability to transfer the acquired knowledge to new situations. Similarly, if the 

instruction is solely focused on innovation, students may struggle to connect what they are 

learning with their prior knowledge so that learning and transfer will be inhibited. They propose 

that the preparation for future learning and transfer will be enhanced if the instruction focuses on 

moving along a diagonal trajectory in the two dimensional space of innovation and efficiency. 

 

Out of the two essential parameters for the transfer of learning, one way to define 

ñefficiencyò is the ability to ñrapidly retrieve and accurately apply appropriate knowledge and 

skills to solve a problem with understanding and explanationò (Schwartz et al. 2005). Generally 

speaking, the best method for increasing efficiency is, as the aphorism says, ñpractice makes 

perfectò. Andersonôs research on the effect of practice suggests that information can be retrieved 

faster from the long term memory while solving problems through more practice (Anderson 

1999). More practice in applying the same knowledge to different contexts also enhances 

peopleôs ability to break down a new task into several routine problems which can be easily 

solved (Schwartz et al. 2005). 

However, over-emphasis on efficiency in the transfer of knowledge has the serious 

disadvantage of producing ñfunctionally fixed behaviorsò (Luchins 1942) or ñroutine expertsò 

who can quickly and accurately solve the familiar problems but are not be able to go beyond the 

routine procedures (Hatano & Inagaki 1986, Hatano & Oura 2003). People focusing on 

efficiency can be confined in their own routine task without stepping out to analyze the problems 

from a different angle. One interesting example is the story told by James Adams in the book 

ñConceptual blockbusting: A guide to better ideasò (Adams 1990). He mentions that a group of 

mechanical engineers were struggling to design a machine which could pick up tomatoes without 
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bruising them. Though these engineers tried many ways to improve the tomato picker, no 

inspiring outcome occurred. Then some botanists joined this project and provided a different 

viewpointðcultivate stronger tomatos with thicker skin! Similarly, when we interviewed 

students in traditionally taught quantum mechanics courses about how the wave function of the 

system would evolve after a position measurement, a majority of studentsô incorrect responses 

can be classified in two categories: some of them claimed that the system will be stuck in the 

position eigenstate while others claimed that it will go back to the initial state. Even if we told 

students that neither of these choices were correct, they could not think of another option, e.g., 

the wavefunction will evolve with time according to the Time-dependent Schrödinger equation 

(which is the correct answer). Instead, many students did not believe that there can be another 

choice. They would often argue with statements such as the following ñif the system neither 

stays in the collapsed state nor goes back to the initial state, where could it goò? 

Therefore, for robust transfer of learning, instructional tools should include elements of 

ñinnovationò. Innovation sometimes originates from the stages of disequilibrium when people 

find that their routine ways of thinking does not work (Schwartz et al. 2005). Creating optimal 

mismatch opportunities via innovative learning tools can be helpful in not only building a 

knowledge structure but also in enhancing studentsô innovative ability. The advanced students in 

quantum mechanics often have a reasonable expertise in introductory physics and classical 

mechanics but they are ñnovicesò in quantum mechanics. Effective instructional tools can help 

students go beyond their routine reasoning processes in classical mechanics and learn to think in 

a quantum mechanical way. 

In physics courses, straight lectures are often used as an efficient strategy for conveying 

knowledge. However, if students are not given an opportunity to think, they may memorize the 
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algorithms and definitions of concepts without developing a functional understanding of the 

fundamental principles of physics. On the other hand, if students are given innovative tasks that 

force them to think about the physics principles involved beyond what they have been told, they 

may be able to interpret the concepts better and build a good knowledge structure. But if these 

innovative tasks are too challenging and beyond studentsô zone of proximal development, 

students can get frustrated, may not pursue the task as desired and hence may not learn. Thus, a 

balance of efficiency and innovation is required for learning to be meaningful and for appropriate 

transfer of knowledge to occur (Schwartz et al. 2005). The pace of efficient instruction and the 

complexity of the innovative tasks should therefore be carefully controlled (Schwartz et al. 

2005). By considering the issues related to innovation and efficiency together in an educational 

process, learners can become ñadaptive expertsò who are not only able to solve routine problems 

but can also utilize their knowledge to solve novel problems in a new domain (Hatano & Inagaki 

1986). 

We note that one common element of all of these seemingly different frameworks 

discussed in this and the previous two sections is their focus on students' prior knowledge in 

order to scaffold learning. Indeed, instructional tools must be designed with students' prior 

knowledge in mind in order for instruction to be in the zone of proximal development and to 

provide optimal mismatch to ensure adequate preparation for future learning. 
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1.4 GUIDED INQUIRY APPRO ACH 

Traditionally, physics instruction is based on the instructorsô perspective of the course materials 

and the instructorsô anticipation of the studentsô level (McDermott 1991). Instructors usually 

have expertise in physics (at least instructors at the college level). Unfortunately, without 

guidance and support related to effective teaching, many instructors have difficulty 

understanding the importance of knowing the prior knowledge of students for effective teaching. 

They have difficulty putting themselves in studentsô shoes and often consider the difficulty of the 

subject matter from their perspective instead of the studentsô perspective. Often, instructors do 

not use a systematic approach to problem solving which includes performing a conceptual 

analysis, planning and decision making before the implementation of the plan. Moreover, the 

instructor may automatically use problem solving as an opportunity for repairing, extending and 

organizing their knowledge, but reflection and metacognition must be taught explicitly to 

students. They themselves reflect upon why a principle of physics was suitable in one situation 

but not in another situation and how they will recognize the next time that principle is relevant in 

other situations. Without explicit guidance, students may not understand the importance of 

reflection, metacognition and knowledge organization in mastering physics. For example, most 

students in an introductory physics course know the statement of Newtonôs third law that the 

action and reaction forces of two bodies are equal in magnitude and opposite in direction. 

However, many students still believe that a heavy truck exerts more force on a small car when 

they crash. While students may be given some quantitative problem asking them to find the 

accelerations of the truck and the car after collision, they may look at a solved example problem 

and obtain an answer to the quantitative question asked without internalizing that the forces on 

the truck and car are equal in magnitude. As long as they can get an answer to a quantitative 
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problem, students often do not go through the deeper reasoning process to build the connections 

between the new knowledge and their previous experiences, reconcile the differences, and repair 

and build a robust knowledge structure.  

Research shows that students must be actively engaged in the learning process for 

learning to be meaningful. To overcome the disadvantages of traditional instruction, inquiry-

based teaching and learning strategy has been introduced in science education. In 1996, the 

National Science Education Standards asserted that the study of science ñmust emphasize student 

understanding through inquiryò (National Research Council 1996 p.212). In the National Science 

Education Standards, inquiry is defined as follows (National Research Council 1996, p.23): 

ñScientific inquiry refers to the diverse ways in which scientists study the natural world 

and propose explanations based on evidence derived from their work. Inquiry also refers to the 

activities of students in which they develop knowledge and understanding of scientific ideas, as 

well as an understanding of how scientists study the natural world.ò   

Guided inquiry is a commonly used technique in an inquiry-based instruction. In the 

guided inquiry approach, the instructor provides the course materials and appropriate ñguidingò 

questions for the students to investigate (Colburn 2000). The guided inquiry approach reflects 

how people understand the world and how the scientific knowledge is developed. Thus, it is a 

more natural way for the students to construct their knowledge structure with guidance from the 

questions that students are asked to investigate. In the learning cycle of a guided inquiry 

approach, students first work on the questions in the learning materials using their prior 

knowledge so that they can develop their own explanations based upon their current 

understanding of relevant scientific concepts and principles. Then, they can discuss their 

reasoning and explanations with their classmates to make sure that their interpretations are 
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consistent with others. The students can also be posed questions in other situations and asked to 

evaluate whether their reasoning is consistent with what actually happens in those situations and 

with the guidance and perspective provided by the instructor. If the students find that their 

reasoning is inconsistent with the perspective provided, they can examine possible 

misconceptions and gaps in their knowledge. After the students reconcile the differences 

between their initial reasoning and the correct perspective, another question can be posed to 

guide them to investigate a new aspect of the concepts they just learned and to help them build a 

robust knowledge structure.  

Some have argued that inquiry-based learning provides ñminimal guidanceò so it cannot 

be more effective than the traditional lecture or direct instruction (Kirschner et al. 2006). 

However, further research clarifies the difference between inquiry-based instruction and a 

ñminimal guidanceò approach in which students have very little guidance and shows evidence of 

the effectiveness of guided-inquiry approach in the learning process (Hmelo-Silver et al. 2007). 

In fact, the guided-inquiry approach provides extensive scaffolding and rich guidance for 

students learning scientific principles. When the questions used in the guided-inquiry approach 

are carefully designed, it can scaffold student learning and help them build a robust knowledge 

structure. Moreover, the role of the instructor in an inquiry-based class is not simply that of a 

person who supplies a set of questions that build on each other. He/she must pay attention to the 

studentsô reasoning process and monitor studentsô learning. The instructor can also respond to 

studentsô questions and guide them appropriately.  

We note that inquiry-based instruction does not exclude other teaching and learning 

strategies. As noted in the National Science Education Standards, instructors should use different 

approaches to develop studentsô knowledge and scientific abilities (National Research Council, 
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1996, p23). Traditional lecture still has its advantage in efficiently distributing the necessary 

information, especially when the class time is not long enough to cover everything using an 

inquiry-based approach. Therefore, when developing research-based learning tools for quantum 

mechanics, we make the guided-inquiry approach compatible with the traditional lectures. For 

example, the instructors can prepare their lectures as they used to but add QuILTs and concept 

tests as inquiry-based learning tools during the lecture to help students develop a good grasp of 

physics concepts.  

For example, to help students develop a better understanding of quantum mechanics via 

the Stern-Gerlach experiment or to help with their understanding of issues related to quantum 

measurement, we have designed the corresponding QuILTs which use a guided-inquiry approach 

based on studentsô common difficulties and prior knowledge. Each QuILT typically contains 20 

to 30 guided questions. In a QuILT, we may use a group of 3 to 5 questions to address one aspect 

of the new knowledge. At the end of each group of questions, necessary feedback is provided to 

students via computer simulations, illustrations and a general class discussion of the issues. If the 

QuILT is implemented in class, the instructor can lead a discussion at the end of each group of 

questions to ensure that everybody benefits from what others have learned. The difficulty level 

of the questions as well as the connection between different groups of questions in a QuILT is 

carefully monitored. A QuILT can also be used as a homework supplement or as a self-study tool 

by students.  
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1.5 PEER INSTRUCTION  

Peer instruction was popularized by Mazur at Harvard University in the 1990s. As stated in 

Mazurôs manual of peer instruction, the fundamental goal of implementing peer instruction 

strategy in class is ñto exploit student interaction during lectures and focus studentsô attention on 

underlying conceptsò (Mazur 1997 p.10). This statement actually points out two commonly 

existing problems in many physics classrooms. One problem is that students have little 

interaction with the instructor and their classmates so they have inadequate opportunity to benefit 

from such interactions and reflect on what they are taught. Most students just sit in the classroom 

and copy everything on the blackboard or powerpoint slides. Or in some cases, students would 

not bother to come to the class if they can download the slides online or copy the lecture notes 

from their classmates. Students are often too busy in taking notes to ask a question or discuss 

their confusions with the instructor and classmates. Then after the class, they are very likely to 

forget about their questions. Some professors ask informal questions in the class to interact with 

the students. However, usually only a small group of students in the class are willing to answer 

the questions and the silent majority in the class do not get involved.    

The other common problem in the traditional physics classes is that students pay less 

attention to the qualitative interpretation than the quantitative skills when learning physics. 

Students only learn what they are tested on. Since most of the questions in the homework and 

exams in a traditional physics course ask the students to calculate a physical quantity or derive an 

equation, things that can be done algorithmically, so that students often have the epistemological 

misunderstanding that physics is just a collection of formulas and algorithms. Without incentive, 

students make little effort to interpret the concepts and principles and learn to organize their 

knowledge hierarchically. They tend to use a plug and chug approach to solving physics 
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problems by looking for a suitable formula in which they could plug in all the variables given in 

a problem statement. But algorithmic quantitative exercises cannot automatically improve 

studentsô conceptual understanding. Research has shown that high-performing students on 

quantitative tests may fall  in the low-performing group on conceptual tests (Mazur 1997 p.7-10). 

Therefore, it is of great importance to help students develop conceptual understanding and build 

a robust knowledge structure of physics.   

In the peer-instruction approach, concept tests are used as a guidance to lead peer 

discussions in class. A concept test question is usually a multiple-choice question related to a 

core concept or principle that is being discussed in the course. Most of the time, the options in 

each multiple-choice question have been prepared before the lecture (with alternative choices 

often dealing with common difficulties) though in some cases the instructor can ask the students 

to provide the possible answers and then let the class vote on these ideas. For a class using the 

peer instruction method, the class hour can be divided into several pieces of presentations 

focusing on each central point (Crouch & Mazur 2001). At the end of each short presentation, the 

corresponding concept test questions are given to the class. Students discuss with a partner the 

answers to the concept test questions and then they are polled either by electronic clickers 

(Beatty et al. 2006), show of cards (with A through E written on each card) or by show of hands 

for each choice in the multiple-choice question. 

There are tremendous advantages to implementing peer instruction in class. First of all, 

students are actively engaged in the learning process instead of passively listening to the lecture 

and taking notes. During the peer discussion, students must convey their understanding about the 

relevant concepts to their peers as well as examine their peersô interpretation and reasoning. 

Since this task is challenging, students must constantly be on their toes. They must focus on what 
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they just learned, discussing with their peers, and repair, extend and organize their knowledge in 

their long term memory. 

Secondly, in the peer instruction approach, students are encouraged to ask questions. 

Moreover, when a student gives an answer after a group discussion and the answer turns out to 

be incorrect, the student would treat it as ñourò mistake instead of ñmyò mistake. Thus, he/she is 

less shy or awkward to ask for clarification. In addition, students can often understand each 

otherôs difficulty much better than the instructor can because all students have learned the 

material recently and have gone through similar processes of reasoning and clarification of 

confusion. Since there is a large gap between the novice and the expert knowledge structure, 

some mistakes made by the students may seem puzzling to the instructor. On the other hand, 

students in the class may have experienced and overcome similar difficulty in their reasoning 

process so they can effectively guide their classmates to the right track. Research have shown 

that students can ñco-construct knowledgeò when they are solving problems with peers (Singh 

2005). Co-construction of knowledge occurs when neither of the two students in a discussion 

group could solve the problem individually, but they are able to solve the problem together.  

Thirdly, the instructor could have an instant feedback on how well the class understands 

the content just taught. This feedback can be easily and quickly obtained quantitatively and 

carefully analyzed later if the classroom is equipped with an electronic clicker system. Students 

use the remote answering device (clicker) to record their answers for a concept test question and 

the distribution of their selections can be shown anonymously to the whole class via computer 

projection. If most students make the right choice, then the instructor can safely move to the next 

topic. Otherwise, further discussions can take place to make sure that most students in the class 

have a correct understanding of the relevant concepts. Even if the electronic devices are not 
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available in the classroom, the peer instruction method can still be used by asking students to 

show their answers using cards or a show of hands. The instructor could prepare cards, or simply 

letter size papers, in different colors with the choices A, B, C, D & E so that the answer 

distribution can also be efficiently estimated. The drawback of showing cards or raising hands is 

the lack of anonymity. In these cases, studentsô answers may be influenced by othersô responses.   

Last but not least, peer instruction with an electronic clicker system can increase the class 

attendance which may have positive implications for learning. Points can be awarded to students 

for tying to answer the clicker questions even if their selections are incorrect. Since students have 

learned the material recently, students can be awarded most of the points (e.g., 80%) for trying to 

answer the clicker questions even if they are not correct. Also instructors should make students 

realize that questions similar to the concept test questions will be asked in their midterm and 

final exams so that they take learning with peers seriously instead of randomly pressing a button 

on the clicker.  
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2.0  IMPROVING STU DENTSô UNDERSTANDING OF POSSIBLE 

WAVEFUNCTIONS  

2.1 ABSTRACT 

In this chapter, we will describe the difficulties students have with possible wavefunctions. We 

will also discuss the development and implementation of a research-based Quantum Interactive 

Learning Tutorial (QuILT) to reduce these difficulties. The preliminary evaluation shows that the 

QuILT about possible wavefunctions is effective in improving studentsô understanding of the 

concepts related to possible wavefunctions. 

2.2 BACKGROUND  

The wavefunction is one of the most fundamental concepts in quantum mechanics. In Newtonian 

mechanics, once we know the position )0( =tx and velocity )0( =tv  of a particle with mass m  

at a given time t=0 and the force ),( txF acting on it as a function of time, we can at least 

theoretically figure out the position )(tx and velocity )(tv  for all future times and from that 

information derive other dynamics variables as a function of time, e.g., momentum and kinetic 

energy. In quantum mechanics on the other hand, a particle is represented as a ñprobability 

waveò which is described by the wavefunction ),( txY  at a given time t.  The absolute square of 
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the wavefunction 
2

),( txY  gives the probability density of finding the particle at position x , at 

time t . The wavefunction ),( txY  itself is in general complex so its absolute square is 

 ),(),(),( *2
txtxtx YY=Y ,  (Eq 2.1) 

where ),(* txY  is the complex conjugate of the wavefunction ),( txY .  

Any possible wavefunction of a quantum system must satisfy some basic properties. 

First, since 
2

),( txY  represents the probability density of finding the particle at position x  and 

the probability of finding the particle anywhere in space must be unity, the possible 

wavefunction ),( txY  for any quantum system must be normalizable, i.e., for one spatial 

dimension, 

 1),(
2
=Yñ

+¤

¤-

dxtx . (Eq 2.2) 

This implies that the wavefunction must be square integrable and must go to zero at plus and 

minus infinity. Second, there cannot be two different values of the probability density for finding 

the particle at a given position x . So the wavefunction ),( txY  (both its real and imaginary parts) 

must be continuous everywhere. Also, the wavefunction must satisfy the boundary conditions of 

the quantum system. For example, ),( txY  must be zero at the boundary of a one dimensional 

(1D) infinite square well since the potential is infinite beyond the boundaries of the well. 

Moreover, the first derivative of the wavefunction xµYµ /  must be continuous everywhere 

except for the positions where the potential energy )(xV  is infinite. This is because the kinetic 

energy operator depends on the second derivative of the wavefunction and  is given by 
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If xµYµ /  is discontinuous at a position where the potential energy )(xV  is finite, the 

expectation value of the kinetic energy of the particle would be infinite.  

A possible wavefunction of a quantum system can be written as a linear superposition of 

a complete set of basis vectors. Since eigenfunctions of an operator corresponding to a physical 

observable, e.g., energy, form a complete set of basis vectors, we can always write a possible 

wavefunction in terms of a linear superposition of the energy eigenfunctions for that system. The 

energy eigenfunctions )(xny  ( ,...3,2,1=n ) corresponding to the energies nE  satisfy the Time-

Independent Schrödinger Equation (TISE)  

 )()(Ĕ xExH nnn yy = . (Eq 2.4) 

Since the time evolution of a quantum system is governed by the Time-Dependent Schrödinger 

Equation (TDSE), the energy eigenfunction at time t  can be represented by the energy 

eigenfunction at time 0=t  multiplied by a common phase factor, i.e., 
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When a quantum system is in an energy eigenstate, the expectation value of any observable QĔ 

(without explicit time dependence) is time-independent because the common phase factor 

cancels out, i.e., 
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Therefore, the energy eigenfunctions are also called the stationary state wavefunctions.  

However, all stationary state wavefunctions are not possible wavefunctions for a quantum 

system. For example, the stationary state wavefunction of a free particle is a plane wave ikxe  

where k  is the wave vector. This wavefunction is not normalizable so it is not a possible 

wavefunction for a free particle. However, a normalizable free particle wave packet can be 
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constructed by taking a linear superposition of the stationary state wavefunctions ikxe  with 

different wave vectors k .  

2.3 INVESTIGATION OF STUD ENTSô DIFFICULTIES  

In these investigations, our goal was to examine studentsô difficulties with possible 

wavefunctions after traditional instruction so that we can devise strategies to improve studentsô 

understanding. The investigation of studentsô difficulties with possible wavefunctions was 

carried out by administering written surveys to more than a hundred advanced undergraduate and 

graduate students enrolled in quantum mechanics courses and by conducting individual 

interviews with a subset of students. Both open-ended questions and multiple-choice questions 

were administered to probe studentsô difficulties. The individual interviews were conducted 

using a think-aloud protocol (Chi 1994). During the think-aloud interviews, students were asked 

to verbalize their reasoning process while they answered the questions about possible 

wavefunctions. They were not interrupted unless they remained silent for a while. At the end of 

the interview, we asked the students to clarify issues they had not made clear in their earlier 

explanations. 

2.3.1 Difficulties related to the normalization of possible wavefunctions 

One survey question asked students to draw a qualitative sketch of the ground state wavefunction 

of a particle in a 1D finite square well of width  a  and depth 0V-  ( 00>V ) between ax¢¢0 . 

We note that though students were provided separate spaces for drawing the wavefunction, they 
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still confused the vertical axis in the potential energy diagram with the vertical axis of the 

wavefunction. Instead of simply showing the location of 0=x  and ax=  in their sketches, many 

students redrew the potential energy diagrams and situated the wavefunction in the well without 

specifying what the vertical axes of their plots were. Such confusion between the vertical axis of 

the potential energy diagram and the vertical axis of wavefunction indicates that students may 

have difficulties with interpreting the dimension (unit) of the wavefunction. For a possible 

wavefunction ),( txY  corresponding to a quantum system in one spatial dimension, the 

normalization condition (Eq. 2.2) must be satisfied, which implies  

 xofunittxofunit /1),( =Y , (Eq. 2.7) 

in which the position x  has the unit of length.   

Another question in the investigation asked students to draw the wavefunction of the 

particle in a 1D finite square well when the energy of the particle is higher than zero (the 

potential energy )(xV of the finite square well is 0)( VxV -=  between ax¢¢0  and 

0)( =xV elsewhere). In response to this question, some students incorrectly claimed that the 

slope of the wavefunction is zero outside the well since the potential energy there is zero (e.g., 

Figure 2.1). The student who sketched Figure 2.1 also incorrectly believed that the constant 

value of the wavefunction in the region III is lower compared to region I since it is affected by 

the potential energy in region II and ñdiesò. 

 

Figure 2.1 According to this student, the slope of the wavefunction is zero in the regions where 

potential energy is zero. 



 38 

Some students also had difficulty with normalization of the wavefunction and why 

normalization is important. For example, some students were confused about the normalization 

issues of a free particle stationary state wavefunction. Since the stationary state wavefunction of 

a free particle cannot be normalized, it is not a possible wavefunction for a free particle. Some 

students were confused about whether a free particle can be in a stationary state. For a free 

particle, we can form a wave packet which is a superposition of the energy eigenstates. If these 

wavepackets are formed by taking a linear superposition of stationary states in a very narrow 

range of the energy spectrum, it can be made normalizable but still considered to be almost a 

stationary state wavefunction. Thus, although a stationary state wavefunction of a free particle is 

not a possible wavefunction, the free particle can still have its energy in a very narrow range.  

2.3.2  Difficulties related to the boundary conditions in different potential energy wells 

The one dimensional (1D) infinite square well and 1D finite square well are common models 

used to illustrate the basic machinery of quantum mechanics. However, students have difficulties 

in differentiating between the possible wavefunctions for the finite and infinite square wells. For 

example, when asked to draw the ground state wavefunction for a finite square well, some 

interviewed students claimed that the shape of the various bound state wavefunctions for the 

finite square well cannot be sinusoidal inside the well because the sinusoidal stationary state 

wavefunctions are only possible for an infinite square well. One of the students incorrectly 

sketched a Gaussian function and claimed that the ground state wavefunction should be Gaussian 

to ensure that the wavefunction has no cusp and decays to zero outside the well. However, 

solving the TISE for the finite square well, one finds that the stationary state wavefunctions 

inside the finite square well are sinusoidal functions. We find that while students noticed some 
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differences between the finite and infinite square well stationary state wavefunctions correctly, 

they overlooked some features that these two models have in common.    

When analyzing the possible wavefunctions for a finite square well, some students over-

generalize what they have learned about the stationary state wavefunctions for that potential 

energy well. For example, the stationary state wavefunctions for a finite square well have non-

zero exponential tails (bound states) or oscillatory behavior (scattering states) in the region 

outside the well. Students often incorrectly over-generalize the behavior of the stationary state 

wavefunctions and conclude that any possible wavefunction for a finite square well must have a 

non-zero part outside the well. For example, in a multiple choice question, we asked 85 students 

whether a normalized wavefunction as shown in Figure 2.2 is a possible wavefunction for a finite 

square well between ax<<0 . The wavefunction )(xy  shown is zero in the regions 1bx<  and 

2bx> . Only 40% of the students correctly answered that such a wavefunction is a possible 

wavefunction for the finite square well. About 51% of the students chose the wrong statement 

that ñit is not a possible wavefunction because the probability of finding the particle outside the 

finite square well is zero but quantum mechanically it must be nonzeroò. Among those students 

who incorrectly believed that the wavefunction must be nonzero outside the well, 60% also 

claimed that the wavefunction in Figure 2.2. does not satisfy the boundary condition of the finite 

square well.   

 

Figure 2.2 A wavefunction localized inside a finite square well. Students incorrectly believed that any 

possible wavefunction in a finite square well must have non-zero value outside the well. 
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2.3.3 Difficulties related to the continuity of possible wavefunction 

Students often neglect the requirement of the continuity of the wavefunction when they sketch 

the wavefunction for a particle interacting with a piecewise continuous potential energy such as 

the finite square well. For example, in Figures 2.3(a) and (b), both students realized that the 

ground state wavefunction is sinusoidal inside the finite square well and decaying outside the 

well. However, they drew the wavefunction inside and outside the well separately without 

ensuring that the wavefunction is continuous at the boundaries between different regions. In 

Figure 2.3(c), a student sketched a scattering state wavefunction of a particle incident from the 

left side of the well. The wavefunction should be oscillatory in all the three regions (including 

inside the well) instead of exponentially decaying as drawn by the student. Also, the student who 

drew Figure 2.3(c) incorrectly sketched a discontinuous wavefunction at the left boundary of the 

well.   

 

Figure 2.3 Samples of incorrect sketches of wavefunctions which are discontinuous at the boundaries 

of the finite square well. 
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2.3.4 Difficulties related to the continuity of the first derivative of a possible wavefunction 

Compared to the continuity of the wavefunction, the continuity of the first derivative of the 

wavefunction is more difficult for the students to internalize. Many students do not correctly 

interpret the meaning of the first derivative of the wavefunction xµYµ / . Since the derivative of 

xµYµ /  (or the second derivative of Y) is related to the kinetic energy of the system, the 

wavefunction must be smooth everywhere except where the potential energy is infinite. For 

example, in a 1D infinite square well between ax¢¢0 , the first derivative of the stationary 

state wavefunctions are continuous between ax<<0  but discontinuous at the boundaries 0=x  

and ax= . Thus, a possible wavefunction for an infinite square well should not have any cusp 

inside the well. However, when we asked the students whether the function as shown in Figure 

2.4 was a possible wavefunction for an infinite square well, four out of seven students claimed 

that it is a possible wavefunction even though the question explicitly mentioned the discontinuity 

of xµYµ /  at the position bx=  inside the well. Some students made similar mistakes when they 

were asked to draw the ground state wavefunction for a finite square well as shown in Figure 2.5. 

 

Figure 2.4 A wavefunction with a cusp inside the well is not allowed for an infinite square well. 

 

Figure 2.5 Wavefunction with a cusp inside the well drawn by a student. The wavefunction is not 

allowed for a finite square well. 
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Some students who did not realize that the first derivative of the wavefunction must be 

continuous where the potential energy is finite over-generalized their experience about the 

discontinuity of xµYµ /  at the boundaries of an infinite square well and incorrectly believed that 

xµYµ /  can be discontinuous at the boundaries of a finite square well as well. For example, 

when students were given a question asking them to draw a wavefunction that is possible for 

both infinite and finite square wells, a student sketched a stationary state wavefunction for the 

infinite square well and claimed that ñit (the stationary state wavefunction for the infinite square 

well) also works for finite square wellsò.  

2.3.5 Difficulties with qualitative sketch of the possible wavefunction without using 

quantitative solutions  

Some students have difficulties with qualitatively sketching the possible wavefunction if they do 

not know the quantitative solution of the Time-Independent Schrödinger Equation (TISE) for the 

system. During the interview, one student claimed that it is impossible to draw the stationary 

state wavefunctions for a finite square well because one must find the solution of a 

transcendental equation which can only be numerically solved. When the student was 

encouraged to make a qualitative sketch, he drew two coordinate axes and then drew some 

parallel curves and a straight line from the origin intercepting the curves (Figure 2.6). He 

claimed that all he can say without solving the equation numerically is that the intercepts will 

give the wavefunction. While one must solve a transcendental equation to find the finite number 

of bound states for a finite square well, the student was asked to draw a qualitative sketch of the 

wave function, something that is taught even in a modem physics course. In particular, students 

are taught that the bound state wave functions for a finite square well look sinusoidal inside the 
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well with an exponential tail outside in the classically forbidden region. It appeared that the 

student had memorized a procedure but had not developed a qualitative "feel" for what the bound 

and scattering state wave functions should look like for a finite square well. 

 

Figure 2.6 A studentôs sketch to find a graphical solution of the transcendental equation which he 

believed was necessary to obtain a qualitative sketch of the ground state wavefunction for the finite square 

well potential energy. 

2.4 RESEARCH BASED LEARNING TOOLS  

Based on the investigation of studentsô difficulties, we developed a QuILT to improve studentsô 

understanding of possible wavefunctions. The goal of the possible wavefunction QuILT is to 

help students learn about possible wavefunctions and bridge the gap between conceptual and 

quantitative aspects. The development of the QuILT went through a cyclical iterative process 

which includes the following stages: (1) Development of the preliminary version based upon 

theoretical analysis of the underlying knowledge structure and research on students' difficulties 

with possible wavefunctions, (2) implementation and evaluation of the QuILT by administering it 

individually to students, measuring its impact on student learning and assessing what difficulties 

remained, (3) refinement and modification based upon the feedback from the implementation 

and evaluation.  
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As noted in the introduction section, the QuILT uses a guided approach to learning about 

the possible wavefunctions for a given potential energy and it takes advantage of studentsô prior 

knowledge and resources about wavefunction found during investigation of studentsô difficulties. 

The QuILT also uses computer-based visualization tools to help students develop physical 

intuition about the possible wavefunction for different potential energies. The simulations 

adapted in the QuILT related to the infinite square well and the free particle wave packets are 

developed by the Open Source Physics project (Christian & Belloni 2008), which is flexible and 

can be easily tailored to the desired situations in our QuILT. We also adapted a PhET Interactive 

Simulation developed at the University of Colorado in our QuILT (McKagan et al, 2009).  

2.4.1 Possible wavefunction for  a 1D infinite square well  

The first part of the QuILT discusses the possible wavefunction in the simplest model involving 

an infinite dimensional Hilbert space, i.e., the 1D infinite square well. At the beginning of the 

QuILT, students get an opportunity to review the properties of the stationary state wavefunctions 

)(xny and judge whether the superposition of the stationary state wavefunctions (presented both 

in the mathematical and pictorial representations) are possible wavefunctions for the infinite 

square well at a given time. During the investigation of student difficulties, we found that many 

students could recognize that the superposition of the stationary state wavefunctions in the 

mathematical representation is a possible wavefunction. But they incorrectly believed that the 

same wavefunction in the graphical representation is not possible because the graph is not 

symmetric or anti-symmetric about the center of the well. Therefore, one question in the QuILT 
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is designed in the mathematical representation, e.g., [ ])()(
2

1
21 xx yy + , and another one in the 

graphical representation as shown in Figure 2.7.  

 

Figure 2.7 A superposition of stationary state wavefunctions for a 1D infinite square well. 

To ensure that students understand why the asymmetric wavefunction is a possible wavefunction 

even though the potential energy is symmetric about the center of the well, we help students 

connect the mathematical and graphical representations. We also ask them to consider a dialogue 

in which students have to make sense of a conversation between two people as follows:  

Sally: I donôt understand the answer to question above (Figure 2.7). The wavefunction is 

neither symmetric nor anti-symmetric about the center of the well. Why is it a possible 

wavefunction for a symmetric potential energy? 

Harry: When the potential energy is symmetric, an energy eigenfunction must be 

symmetric or anti-symmetric. But a superposition of energy eigenstates is not necessarily 

symmetric or anti-symmetric. For example, the sum of an even function and an odd function is 

neither even nor odd.  

Sally: But I think a possible wavefunction must be an eigenstate of a particular operator, 

e.g., the Hamiltonian or position operator. 

Harry: Thatôs not true. The possible wavefunction need not be an eigenstate of a 

particular operator. It can be a superposition of the eigenstates. 

Do you agree with Sally or Harry? Explain. 
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The QuILT also asks students to use the simulations to construct various superpositions 

of the stationary state wavefunctions for the infinite square well so that they can watch how the 

symmetric/anti-symmetric stationary state wavefunctions combine into other possible 

wavefunctions that are neither symmetric or anti-symmetric. A snapshot of the simulation is 

shown in Figure 2.8. The first window shows the absolute value of the wavefunction. Students 

can change the width of the infinite square well and start/stop the time evolution to observe how 

the wavefunction changes with time. The option ñphase as colorò should be selected in our 

QuILT. Unselecting this option shows the real and imaginary parts of the wavefunction 

separately. The second window shows the coefficients in the superposition. The coefficients of 

different energy eigenstates (marked by ñquantum #ò) can be inputted to build a wavefunction 

which is a linear superposition of stationary states. ñReò is the real part and ñImò is the 

imaginary part of the coefficients. Students can use the button ñNormalizeò at the bottom of the 

second window to normalize the coefficients. 

    

Figure 2.8 OSP simulation of the possible wavefunction in a 1D infinite square well. 

Students are asked to first predict the qualitative shape of various superpositions of the 

stationary state wavefunctions and then use the simulation to examine their prediction. Students 

also must reconcile the differences between their prediction and what they observe in the 

simulation. The following is a sample excerpt:  
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Predict and sketch the shape of the wavefunction [ ])()(
2

1
)( 21 xxx yy -=Y . 

Input 1 as the coefficient for the ground state and -1 for the first excited state in the 

simulation coefficient box. Click ñnormalizeò and observe the absolute value of the 

superposition wavefunction. Is the shape the same as your prediction? Explain. (Note that the 

simulation shows the absolute value of the wavefunction.) 

After the students use the simulation to build a superposition of the stationary state 

wavefunctions, they are given several multiple choice questions to review the properties of a 

possible wavefunction in an infinite square well. For example, students often incorrectly believe 

that any possible wavefunction must satisfy the TISE. In the QuILT, we ask students to consider 

whether the wavefunction [ ])()(
2

1
)0,( 21 xxx yy +=Y  satisfies the TISE. After their prediction, 

students must check their prediction by explicitly plugging the wavefunction in the TISE. They 

are also asked to find the wavefunction at time t and then plug it into the Time-Dependent 

Schrödinger Equation (TDSE) to check whether ),( txY satisfies the TDSE. They learn that a 

possible wavefunction ),( txY  always satisfies the TDSE but not necessarily the TISE (unless it 

is a stationary state or a superposition of stationary states with the same energy). Students are 

also asked to predict how different possible wavefunctions for an infinite square well evolve with 

time and they use the simulations in the QuILT to check their prediction. This activity is 

particularly useful in helping students understand the difference between the time evolution of 

the probability density for a stationary state wavefunction and a superposition of the stationary 

state wavefunctions.  
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2.4.2 Possible wavefunction for  a 1D finite square well  

The stationary state wavefunctions for an infinite square well are in the form of sinusoidal waves 

inside the well and zero outside the well. It is a simple model to help students understand that the 

possible wavefunction for a quantum system can be written as a linear superposition of the 

stationary state wavefunctions. However, the possible wavefunctions for an infinite square well 

are always zero in the classically forbidden region. Moreover, due to the potential energy being 

infinite outside the well, first derivative of the wavefunction is not continuous at the boundaries. 

These artificially constrained properties of the infinite square well are not true for more realistic 

potential energies. Therefore, students must learn the properties of the possible wavefunctions 

for more realistic potential energies, e.g., the 1D finite square well. 

While discussing the 1D finite square well, students are asked to consider whether a 

wavefunction with a discontinuous first derivative is a possible wavefunction (as shown in 

Figure 2.9). Students learn that it is a possible wavefunction for an infinite square well but not 

for a finite square well since its first derivative is discontinuous at 0=x  and ax= .  

 

Figure 2.9 The first derivative of the wavefunction is discontinuous at the boundaries so this 

wavefunction is not a possible wavefunction for a finite square well. 

Students use the simulation to observe the shape of the stationary state wavefunctions for 

a finite square well. They can also build a wavefunction which is a linear superposition of the 

stationary state wavefunctions in the simulation and compare the difference between the possible 
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wavefunctions for the finite square well and the infinite square well. We adapted the quantum 

bound state program (see snapshot in Figure 2.10) developed by the PhET team at the University 

of Colorado in the QuILT. Students can change the depth and width of the 1D finite square well 

and select a particular energy level to observe the absolute square of an energy eigenfunction. 

Students can also build various linear superpositions of stationary states by clicking the button 

ñSuperposition Stateò and inputting the coefficients as desired. Students can also observe the 

time evolution of the absolute square of the wavefunction (probability density) by clicking the 

button ñPlay/Pauseò. In the QuILT of the possible wavefunction, students are asked to predict the 

outcomes, e.g., the qualitative shape of the superposition state [ ])()(
2

1
21 xx yy +  in a finite 

square well and then check their prediction using the simulation. 

 

Figure 2.10 A snapshot of the simulation of the finite square well. 

Figure 2.11 shows an example in which students are given two similar non-stationary 

wavefunctions (but one stretched to the left with respect to the other) to learn that a possible 

wavefunction in a finite square well can be nonzero beyond the well and need not be symmetric 
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about the center of the well. Earlier in the QuILT, in the context of the infinite square well, 

students are asked to consider the same two wavefunctions and determine if they are possible 

wavefunctions. As discussed in chapter 2.3.2, some students incorrectly believe that the 

wavefunction must be non-zero outside a finite square well because of the fact that the stationary 

state wavefunctions for this system always have a non-zero part outside of the well. We therefore 

also asked students whether a peaked wavefunction as shown in Figure 2.2 is a possible 

wavefunction for a finite square well. For all the three wavefunctions (Figure 2.2, Figure 2.11(a), 

Figure 2.11(b)) for a finite square well, students learn that they are possible wavefunctions 

because they are ñcontinuous, smooth and normalizableò. They learn that just because the 

stationary state wavefunctions have a non-zero part outside of the well does not imply that we 

cannot take their linear superpositions to form possible wavefunctions that are zero outside the 

well.   

       

Figure 2.11 (a) The wavefunction is zero in the classically forbidden region of a finite square well.  

(b) The wavefunction is non-zero in the classically forbidden region of a finite square well. 

Students again use the simulations to check the time evolution of the stationary states and 

non-stationary states for a finite square well. Students are also asked to sketch, e.g., the ground 

state wavefunctions for the finite and infinite square wells and compare and explain the 

similarities and differences between these wavefunctions.  
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2.4.3 Possible wavefunction for a free particle  

In some quantum systems, e.g., a free particle, the stationary state wavefunctions are not 

normalizable. Although the possible wavefunctions in such quantum systems are a linear 

superposition of the stationary states, the stationary states themselves are not possible 

wavefunctions. In the QuILT on possible wavefunctions, we use the free particle system to help 

students understand these issues.  

In the QuILT, students are asked to choose the correct graphical representation of the 

stationary state wavefunction of a free particle and their attention is drawn to the fact that the 

stationary state wavefunctions ikxAe  for a free particle are not normalizable. We provided a 

dialogue question as shown below to help the students understand why an energy or momentum 

eigenstate wavefunction for a free particle is not a possible wavefunction but we can still have a 

free particle with definite energy or momentum. 

Sally: How can the energy eigenfunction not be a possible wave function for the free 

particle?  

Harry: Because the absolute square of the wavefunction must be normalizable. 

Otherwise the total probability of finding the particle would be infinite. 

Sally: I disagree. If the energy eigenfunction is not a possible wave function, that means 

we cannot have a free particle with definite value of energy or momentum. But classically we can 

always have a free particle moving with a constant momentum. 

Harry: Well, the free particles in reality exist as wave packets. The magnitude of the 

momentum of a free particle is kp >=  and the energy is 
m

k
E

2

22>
= , where 

l

p2
=k  is the 

magnitude of the  wave vector. A wave packet could consist of plane waves ikxe  with different 
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wave vectors k  in a very narrow range. Thus, we can consider the wave packet as ñeffectivelyò 

having a definite energy and momentum, if the distribution of energy/momentum is highly 

localized about a given wave vector k . 

Do you agree with Sally or Harry? Explain. 

We incorporated another simulation from Open Source Physics to help students learn that 

a free particle wave packet can be constructed using a linear superposition of the stationary state 

wavefunctions. Students can observe that the wave packet spreads out as time evolves. Students 

learn that the spreading of the wave packet is due to different stationary state wavefunctions that 

form the wave packet having different phase velocities. Students also learn that in condensed 

matter physics, the free particle model is often used for electrons in metals with periodic 

boundary conditions imposed on the system.  

2.4.4 QuILT Homework for Possible Wavefunctions  

The QuILT homework helps students review the concepts they have learned in the QuILT. In the 

homework, students must explain in their own words why the wavefunction must be continuous. 

Students are given different wavefunctions and asked to judge whether they are possible for the 

finite or infinite square well and explain their reasoning. They are also asked to differentiate 

between any possible wavefunction and the stationary state wavefunctions. In the QuILT 

homework, students are also asked to explain why they agree or disagree with statements about 

the possible wavefunctions such as the following:  

(1) Consider the following statement: For an infinite square well, all possible 

wavefunctions are energy eigenfunctions because the time independent Schrödinger equation 
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(TISE) is an eigenvalue equation for energy. Explain why you agree or disagree with this 

statement. 

(2) Consider the following statements: The energy eigenfunction ikxAe ( A  is a constant 

and k is the wave vector) for a free particle is not a possible wavefunction. Therefore, we cannot 

represent a possible wavefunction for a free particle as a superposition of functions of the 

form ikxAe . Explain why you agree or disagree with this statement. 

2.5 PRE-TEST AND POST-TEST DATA 

We conducted preliminary evaluations of the QuILT about possible wavefunction in two 

junior-senior level quantum mechanics classes, first with 13 students and second with 18 

students. The two classes were taught by the same instructor. In both classes, students first 

received traditional instruction about the possible wavefunctions for different quantum systems, 

e.g., 1D infinite square well, 1D finite square well, free particle, etc. After traditional instruction, 

students took the pre-test and then worked on the QuILT. The post-test was administered in the 

following class period after students had finished the QuILT. We designed two versions of a test 

(versions A and B) to assess studentsô understanding of possible wavefunctions. Both versions A 

and B have 5 questions each. Students were randomly given either version A or version B of the 

test as the pre-test after the traditional instruction. Then, each student was administered the 

version of the test he/she had not taken as the post-test after working on the QuILT. In particular, 

15 students in the two classes were administered version A as pre-test (and version B as the post-

test) whereas the other 16 students were given version B as the pre-test (and version A as the 

post-test). The average pre-test score for all 31 students was 63% and the average post-test score 
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was 89%. The average pre-test and post-test score on each question combining the two classes is 

listed in Table 2.1.  

Question A-2 asks students to consider whether a wavefunction with a cusp (as shown in 

Figure 2.4) is a possible wavefunction for an infinite square well. The improved performance 

suggests that the students are more likely to understand that a possible wavefunction must be 

smooth. Question B-3 as shown below tested whether students could recognize the discontinuous 

first derivative of the wavefunction at the boundary which is not possible for a finite square well. 

The results of question B-3 indicate that after the QuILT, students had a better understanding of 

these issues.  

Question B-3: Select all of the following wave functions which are possible for an 

electron in a one dimensional finite square well of width a between 0=x  and ax= . A is a 

suitable normalization constant. You must provide a clear reasoning for each case. 

(a) )/3sin()( axAx p=Y  for ax¢¢0 , 0)( =Y x , otherwise.  

(b) ( ))/2sin(5/3)/sin(5/2)( axaxAx pp +=Y  for ax¢¢0 , 0)( =Y x , otherwise.  

(c) 
2)/)2/(()( aaxAex --=Y . 

Questions A-4 and B-4 both asked students to consider whether the stationary state 

wavefunction for a free particle is a possible wavefunction. We gave the mathematical form of 

the stationary state wavefunction ikxAe  for the free particle in question A-4 but not in B-4. The 

improved performance on both questions in the post-test suggests that students have a better 

understanding of the normalization issues of the free particle stationary state wavefunctions. In 

the post-test, some students explicitly mentioned that a possible wavefunction for a free particle 

can be constructed by forming a wave packet using a linear superposition of the stationary state 

wavefunctions.     
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Question A-5 asked students to sketch a single wavefunction that is possible for both 

infinite and finite square wells of width a. Both wells are between x=0 and x=a. If students 

believed that such wavefunctions do not exist then they were asked to explain their reasoning. 

Partial scores were given to students if they only drew a correct graph but did not provide an 

explanation. In the pre-test, more than 80% of the students either sketched incorrect graphs 

which are not possible for the finite square well or incorrectly claimed that such a wavefunction 

does not exist. After the QuILT, students realized that a possible wavefunction for both infinite 

and finite square wells must be zero outside the well and smooth everywhere including at the 

boundaries of the well. Question B-5 asked the students to sketch a single wavefunction that is 

possible for the infinite square well but not for a finite square well. Students showed improved 

understanding of the properties of possible wavefunction in different potential energy wells after 

the QuILT. 

Table 2.1 The pre-test and post-test scores on each question. A and B represent the test version. 

Fifteen students were administered test A and sixteen students were administered test B in the pre-test and 

switched the test versions in the post-test.  

Question A-1 A-2 A-3 A-4 A-5 B-1 B-2 B-3 B-4 B-5 

Pre-test Score in % 97% 60% 93% 67% 17% 81% 41% 44% 66% 50% 

Post-test Score in % 94% 88% 97% 97% 84% 100% 93% 86% 79% 75% 
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2.6 SUMMARY  

We have investigated studentsô difficulties related to possible wavefunctions for different 

quantum systems and used the findings as a guide to develop the QuILT related to possible 

wavefunctions. Preliminary evaluation suggests that the QuILT about possible wavefunction is 

effective in improving studentsô understanding of these concepts. 
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3.0  IMPROVING STUDENTSô UNDERSTANDING OF BOUND & SCATTERING 

STATE WAVEFUNCTIONS  

3.1 ABSTRACT 

In this chapter, we describe the difficulties students have with the bound and scattering state 

wavefunctions. We also discuss the development and implementation of a research-based 

Quantum Interactive Learning Tutorial (QuILT) to reduce these difficulties. The preliminary 

evaluation shows that the QuILT about the bound and scattering state wavefunctions is effective 

in improving studentsô understanding of the concepts related to bound and scattering states. 

3.2 BACKGROUND  

Energy eigenfunctions )(xny  ( ,...3,2,1=n ) corresponding to the energies nE  satisfy the Time-

Independent Schrödinger Equation (TISE) for a quantum system with Hamiltonian HĔ, i.e.,  

 )()(Ĕ xExH nnn yy = . (Eq 3.1) 

The energy eigenfunction at time t  can be obtained by multiplying the energy eigenfunction at 

time 0=t  by the phase factor 
>/tiEne

-
, i.e., 

 
>/

)0,(),(
tiE

nn
nextx

-
=yy . (Eq 3.2) 
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Since the energy eigenfunctions of a quantum system form a complete set of basis vectors 

for the Hilbert space, any possible wavefunction of the system can be written as a linear 

superposition of the energy eigenfunctions for that system. Based on the comparison between the 

energy of a particle for a given quantum system and the potential energy at plus/minus infinity 

(in the position space), the energy eigenstates can be categorized into bound states and scattering 

states. If the energy of the particle is less than the potential energy at both plus and minus infinity, 

the energy eigenstate is a bound state. Otherwise, the energy eigenstate is a scattering state. 

When approaching infinity ( °¤­x ), a bound state wavefunction for a quantum system decays 

to zero so the bound state wavefunctions are normalizable. But a scattering state wavefunction is 

oscillatory at either plus or minus infinity or both so it is not normalizable. However, although a 

possible wavefunction can be constructed by taking a linear superposition of the scattering states, 

a scattering state itself is not a possible wavefunction for the quantum system.  

3.3 INVESTIGATION OF STUDENTôS DIFFICULTIES  

In these investigations, our goal was to examine studentsô difficulties with the bound and 

scattering state wavefunctions after traditional instruction so that we can devise strategies to 

improve studentsô understanding. The investigation of studentsô difficulties with the bound and 

scattering state wavefunctions was carried out by administering written surveys to more than two 

hundred advanced undergraduate and graduate students enrolled in quantum mechanics courses 

and by conducting individual interviews with a subset of students. We have used both open-

ended questions and multiple-choice questions to probe studentsô difficulties. The individual 

interviews were conducted using a think-aloud protocol (Chi 1994). When the students answered 
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the questions in the think-aloud interviews, they were asked to verbalize their reasoning process 

and not interrupted unless they remained silent for a while. At the end of the interview, students 

were asked to make further explanations on the issues which they had not clarified earlier. 

3.3.1 Difficulties related to the classical bound state and the quantum bound and 

scattering states 

In a classical system, when the energy of an object is less than the potential energy in the local 

regions, the object is in a classical bound state. For example, as shown in Figure 3.1, if a toy car 

with energy E  is initially located between ax=  and bx= , it is bounded in that region and 

cannot move to other regions such as ax<  or bx> . The positions where the potential energy 

V  equals the total energy E  of the classical object are called the classical turning points, e.g., 

ax=  and bx=  in Figure 3.1 (at these points the kinetic energy of a classical particle is zero 

and the particle turns around). The regions beyond the classical turning points are called the 

classically forbidden regions such as the regions (I), (II) and (IV) in Figure 3.1. 

 

Figure 3.1 An example of classical bound state but quantum mechanical scattering state. 

However, for a quantum particle in an energy eigenstate, its wavefunction is non-zero in 

the classically forbidden regions except where the potential energy is infinity. Therefore, a 

quantum particle in an energy eigenstate has a finite probability of being found in the classically 
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forbidden regions. Many students have difficulties in differentiating between the classical bound 

and scattering states and the quantum mechanical bound and scattering states. Take the system 

shown in Figure 3.1 as an example. Some students in our study incorrectly claimed that a 

quantum particle must stay in region (III) for all times, while some other students mistakenly 

believed that a classical particle which was initially in region (III) can also be found in region (I).  

Many students incorrectly believed that any potential energy that allows a classical bound 

state must also allow a quantum mechanical bound state. We have given 109 students in seven 

universities a multiple-choice question asking them whether a quantum mechanical bound state 

is allowed for the potential energy as shown in Figure 3.2. Only 22% of the students correctly 

recognized that no bound state could exist in such a potential energy well since the energy of the 

quantum particle must be greater than the potential energy at plus/minus infinity.  

 

Figure 3.2 A potential energy well that does not allow quantum mechanical bound states. 

3.3.2 Difficulties related to the bound and scattering states being part of the same 

wavefunction 

Some students have difficulty realizing that a bound state or a scattering state is only determined 

by comparing the total energy E  of a quantum particle in the given state and the potential energy 

V at plus/minus infinity. Instead, some students claimed that a given quantum particle is in a 

bound state between the classical turning points and in a scattering state elsewhere, which 

indicates that these students incorrectly believe that the bound and scattering state wavefunctions 

are different parts of the same wavefunction. For example, when we asked the students to draw a 
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qualitative sketch of a ground state wavefunction and a scattering state wavefunction for a one-

dimensional (1D) finite square well of width a  and depth 0V-  between ax¢¢0 , a student 

sketched a wavefunction as shown in Figure 3.3. He believed that the part of the wavefunction 

inside the well was a bound state and the parts of the wavefunction outside the well were 

scattering states corresponding to a ñfree particleò.  

 

Figure 3.3 An incorrect sketch of a wavefunction with bound and scattering states simultaneously. 

We have administered a multiple-choice question to 85 students asking them to judge 

whether the energy levels 1E  and 2E  correspond to a particle in a bound state or a scattering 

state in a finite square well as shown in Figure 3.4. Nineteen percent of the students incorrectly 

believed that a single particle in a given stationary state can have energy 1E  inside the well and 

have a different energy 2E outside the well. These students failed to notice that one stationary 

state wavefunction cannot have different energies in different regions. Therefore, a quantum 

particle in a given state cannot have a bound state wavefunction in some regions and a scattering 

state wavefunction in other regions. 

 

Figure 3.4 E1 corresponds to a bound state and E2 corresponds to a scattering state. A quantum 

particle in a stationary state cannot have different energies in different regions. 
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3.3.3 Difficulties related to the quantum tunneling effect 

In quantum mechanics, there is a non-zero probability for a particle to be found in the classically 

forbidden regions, which is usually called the tunneling effect. However, some students 

incorrectly believe that the tunneling effect can only exist in the scattering states. For example, 

we asked students whether a quantum particle with energy E  interacting with a piecewise 

continuous potential energy as shown in Figure 3.5 is in a bound state or a scattering state. Since 

VE<  at both plus and minus infinity, the particle should be in a bound state. But some students 

claimed that the particle is in a scattering state because ñit can tunnel through the barriersò. Some 

other students believed that the particle is in a bound state in the regions (II), (III) and (V) but in 

a scattering state in the regions (I), (IV) and (VI) since ñclassically the particle cannot be found 

in those regionsò.  

 

Figure 3.5 An example of a bound state particle tunneling into the classical forbidden regions. 

Moreover, although some students realized that a non-zero wavefunction could exist in 

the classically forbidden regions, they still mistakenly believed that it is impossible to find the 

particle in the regions where the energy of the particle is lower than the potential energy ( VE< ). 

When we asked the students where they can find the particle for a given potential energy well as 

shown in Figure 3.5, several students claimed that the particle cannot be found in regions (I), (IV) 

and (VI) because ñthe particle only tunneled through these barriersò. However, when the students 
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were explicitly asked about whether a bound state particle can be found outside the finite square 

well, they would answer yes with no doubt.  

3.3.4 Difficu lties in determining bound states related to the maximum value of potential 

energy vs. the energy of the particle 

A particle is in a quantum mechanical bound state if and only if its energy is less than the 

potential energy at both plus and minus infinity. However, some students are confused about the 

state of the particle when its energy is lower than the maximum value of the potential energy. We 

have administered a question to 15 students asking them about the state of a particle with energy 

E  interacting with a potential energy barrier (with maximum value 0V ) as shown in Figure 3.6. 

Only seven out of the fifteen students correctly answered that the particle is in a scattering state. 

In another multiple-choice question about the same system (in Figure 3.6) administered to 85 

students, 19% of the students chose the option that the particle is in a bound state when 0VE<  

and in a scattering state when 0VE> . 

 

Figure 3.6 A scattering state particle with energy E lower than the potential energy barrier V0. 
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3.3.5 Difficulties related to the directional preference of the scattering state wavefunctions 

for a symmetric potential energy 

A scattering state wavefunction is an energy eigenfunction with energy E  higher than the 

potential energy at either plus or minus infinity or both. A scattering state wavefunction could 

have directional preference, e.g., a particle can be launched from the left hand side of a 1D finite 

square well. However, the directional preference is not necessary and a scattering state 

wavefunction can have no directional preference. For example, ikxe  and ikxe-  are scattering state 

wavefunctions for a 1D free particle system with opposite wave vectors k
C

and k
C
-  but the same 

energy proportional to 
2

k
C

. So their superposition wavefunction ikxikx ee -+  is still an energy 

eigenfunction with the same energy as the scattering state wavefunctions ikxe  and ikxe- . But there 

is no directional preference for the scattering state wavefunction ikxikx ee -+ , which is a standing 

wave.  

However, many students have difficulties with the issues related to the directional 

preference of a scattering state wavefunction. Some students incorrectly assumed that all 

scattering states must correspond to a particle being launched from minus or plus infinity. Such 

misconception could be due to over-generalizing their experience about the experiments of 

scattered particles in modern physics. While some other students claimed that the scattering state 

wavefunctions for a finite square well can be symmetric, their reasoning was incorrect. For 

example, some of them incorrectly sketched the scattering state wavefunction as a symmetrical 

straight line.   
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3.3.6 Difficulties related to the transmission and reflection of a quantum mechanical 

particle in the scattering state 

Classically, when a particle with energy E  moves toward a region with higher potential energy 

EV >0 , the particle will be bounced back. Or if the potential energy is lower, i.e., EV <0 , the 

particle will transmit without reflection. However, in quantum mechanics, the wavefunction in 

general has a non-zero probability of transmission and reflection simultaneously. For a particle in 

a scattering state being launched from the left side of a 1D finite square well, it could have a non-

zero probability of being bounced back by the well. Thus, the wavefunction on the left side of 

the well has components of both incident and reflected waves, e.g., ikxikx BeAe -+ .  

Some students have difficulties with the transmission and reflection of a quantum 

mechanical particle in the scattering states in quantum mechanics. A multiple-choice question 

about a particle launched from minus infinity with energy 0>E  interacting with a 1D finite 

square well (with the depth 00<-V  as shown in Figure 3.7) was administered to 18 students. 

Only 67% of the students correctly selected the options that the particle not only has a non-zero 

probability of passing through the well but also a non-zero probability of being bounced back.  

 

Figure 3.7 The particle launched from the left hand side of the potential energy well has a non-zero 

probability of being bounced back by the potential energy well. 
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3.4 RESEARCH-BASED LEARNING TUTOR IAL FOR BOUND & SCAT TERING 

STATE WAVEFUNCTION  

Based on the investigation of studentsô difficulties, we developed research-based learning tools 

such as a QuILT and peer instruction tools to improve studentsô understanding of the bound and 

scattering state wavefunctions. The QuILT helps the students learn about the bound and 

scattering state wavefunctions using a guided approach. We also used computer-based 

visualization tools in the QuILT to help students develop physical intuition about the bound and 

scattering state wavefunctions for different potential energies. The simulations we adapted in the 

QuILT on bound and scattering state wavefunction were developed by the PhET team at the 

University of Colorado (McKagan et al, 2009). Before the students start using the QuILT, a 

warm-up tutorial is provided to prepare all students with the necessary preliminary knowledge.  

The peer instruction tools address studentsô common difficulties related to the bound and 

scattering state wavefunctions so that the students could reduce some misconceptions and build a 

better knowledge structure through peer discussion. We have used the concept tests as our peer-

instruction tools in the junior-senior level quantum mechanics course at the University of 

Pittsburgh for two years. Students must discuss each concept test question with their peers before 

they submit the answers through the clickers (electronic system). The instructors discuss the 

concepts and principles involved in the concept test questions if the students show difficulty in 

answering the questions. 
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3.4.1 Warm-up tutorial for  the bound & scattering state wavefunction 

In the warm-up tutorial, students get an opportunity to review how to derive the energy 

eigenfunctions from the TISE and why the energy eigenstates can be categorized into bound 

states and scattering states. Students are asked to write the TISE as 

 ( )Y-=
µ

Yµ
ExV

xm
)(

2 2

22>
, (Eq 3.3) 

where )(xV  is the potential energy and E  is the energy eigenvalue. When the potential energy is 

greater than the energy of the particle, the curvature of the wavefunction 22 / xµYµ  has the same 

sign as the wavefunction Y. Students are asked to sketch a function such that the curvature of 

the wavefunction and the value of the wavefunction are both positive (or both negative) 

everywhere. Through plotting the function, the students will realize that such a function will 

keep increasing while approaching infinity (or keep decreasing while approaching minus infinity) 

so it cannot be a normalizable wavefunction. Therefore, students could learn why the energy of a 

quantum system must be greater than the minimum value of the potential energy.  

Students are also required to qualitatively draw a wavefunction in the region near infinity 

based on the relation between the curvature and the value of the wavefunction (Eq 3.3). They 

find that the wavefunction at plus/minus infinity is oscillatory if )(°¤>VE  and decays to zero 

if )(°¤<VE . A multiple-choice question helps students learn that when the energy is less than 

the potential energy at both plus and minus infinity, the wavefunction can be considered as 

bounded in a finite range because the probability of finding the particle at plus and minus infinity 

is zero. Thus, the students are guided to understand that whether a quantum system is in a bound 

state or a scattering state depends on the energy of the quantum particle compared to  the 

potential energy value at plus/minus infinity.   
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After the students learn that the bound states and the scattering states are both energy 

eigenstates, the QuILT asks them whether a quantum particle could have different energy in 

different regions of a piecewise continuous potential energy well (e.g., Figure 3.8). The QuILT 

also contains a dialogue question to elaborate that a particle in an energy eigenstate can only 

have one energy while its wave function can extend over various regions and the energy of the 

particle is not well defined if the wavefunction is not an energy eigenstate. The warm-up 

questions also help students learn that the energy spectrum of a quantum system is discrete for 

the bound states and continuous for the scattering states.  

 

Figure 3.8 An energy eigenstate only corresponds to one energy though the potential energy could 

have different values in different regions. 

3.4.2 QuILT o n the bound & scattering state wavefunction 

At the beginning of the QuILT, we ask the students a sequence of questions to help them 

distinguish between the classical bound states and the quantum bound states. Then students are 

given some questions about the 1D infinite square well and the simple harmonic oscillator (SHO) 

potential energy well which only allow bound states. Students also predict whether a quantum 

particle can be found in the classically forbidden regions of a SHO potential energy well and 

then they can use the simulation to observe the bound state wavefunctions for a SHO and 

reconcile the differences between their predictions and observations. They also compare and 
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explain the similarities and differences between the bound state wavefunctions of a 1D infinite 

square well and a SHO.  

After the students have learned the simple models, e.g., the 1D infinite square well or the 

SHO, which only allow bound states, they are guided with some targeted questions about the 1D 

finite square potential energy well ( 0)( 0<-= VxV  between ax¢¢0  and 0)( =xV  elsewhere) 

that allows both bound and scattering states. Students first predict the shape of a bound state 

wavefunction inside and outside the finite square well when the energy is less than zero. A 

computer simulation helps the students observe the shape of the bound state wavefunctions for a 

finite square well so that they can examine their prediction and reconcile any differences 

between the prediction and observation. Then, the students are asked to consider whether a 

scattering state wavefunction with energy 0>E  incident from the left side of the well will 

necessarily be bounced back by the well. In the simulation about the scattering state 

wavefunctions, students can watch that the amplitude of the wavefunction is a constant on the 

right hand side of the well but not on the left hand side. Students learn that the changing 

amplitude of wavefunction on the left hand side is due to the interaction between the incident 

wave and the reflected wave. In a pictorial multiple-choice question as shown in Figure 3.9, 

students are asked to select the correct shape of a scattering state wavefunction with no 

directional preference (e.g., option (II) in Figure 3.9) when the particle is not sent from one side 

of the well. A dialogue question in the QuILT helps students understand why a scattering state 

wavefunction does not necessarily have directional preference.  
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Figure 3.9 A multiple choice question asking students to choose the correct qualitative sketch of a 

scattering state wavefunction with no directional preference. The correct answer is (II) only. 

Some potential energies such as a 1D finite square barrier ( 0)( 0>=VxV  between 

ax¢¢0  and 0)( =xV  elsewhere) only allow scattering state wavefunctions. As discussed in 

section 3.3.4, some students mistakenly believe that a wavefunction is in a bound state when the 

energy of the particle E  is less than the maximum potential energy 0V . To reduce these 

difficulties about the scattering states for a particle interacting with a 1D finite square potential 

energy barrier, the QuILT asks the students to predict the state (bound or scattering) of a 

quantum particle when its energy is higher or lower than 0V . Then the students could use the 

simulation to change the height of a potential barrier and the energy level of a particle to observe 

the shape of the wavefunction inside and outside the barrier. Students will find that the 

wavefunction is always oscillatory on the left and right sides of the barrier no matter whether the 

energy of the particle is lower or higher than the potential barrier. Therefore, for a particle 

interacting with a finite potential energy barrier, its energy eigenfunctions always correspond to 

scattering states. Students are also asked to predict whether the wavefunction will be reflected by 

the barrier or transmit through the barrier. Their predictions can be checked via the simulation by 

comparing the amplitude of the wavefunction on the left and right sides of the barrier. The 

varying amplitude of probability density on one side of the well indicates that the incident 
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wavefunction is reflected by the potential energy barrier.  A snap shot of the simulation is shown 

in Figure 3.10. 

 

Figure 3.10 PhET simulation of a scattering state wavefunction incident from the left hand side of a 

potential energy barrier. The probability density (square of the amplitude) of the wavefunction varies on the 

left side of the well due to the interaction between the incident and reflected wavefunctions. 

In addition to the QuILT, a sequence of research-based concept test questions can be 

integrated with the lectures as peer-instruction tools to improve studentsô understanding of the 

issues related to bound and scattering state wavefunctions. The concept test questions will be 

discussed in chapter 8 in this thesis.  

3.5 PRELIMINARY EVALUATI ON 

We conducted preliminary evaluation of the QuILT about bound and scattering state 

wavefunctions in two junior-senior level quantum mechanics classes, the first with 14 students 



 72 

and the second with 18 students. Students first received lectures and then used the concept tests 

as peer-instruction tools in both classes when learning the topics related to bound and scattering 

state wavefunctions. After the lecture and the peer instruction in class, students took the pre-test 

and then worked on the QuILT. The post-test was administered in the following class period 

after students had finished the QuILT. To eliminate any possible differences in the difficulty 

levels of the pre-test and the post-test, we designed two versions of a test, i.e., Test A and Test B, 

each of which has six questions. Students were randomly given either Test A or Test B as the 

pre-test and then each of them was administered the version of the test he/she had not taken as 

the post-test. In particular, 18 students in the two classes were administered Test A as the pre-test 

and 17 of them (one student absent) took Test B as the post-test.  The other 14 students were 

given Test B as the pre-test and 12 of them (two students absent) took Test A as the post-test. 

The average pre-test score for all 32 students was 69% and the average post-test score for the 29 

students was 86%. The average pre-test and post-test score on each question combining the two 

classes is listed in Table 3.1. 

Questions A-1 and B-1 require the students to consider a particle with energy E  

interacting with a piecewise continuous potential energy as shown in Figure 3.5 (question B-1) 

and Figure 3.11 (question A-1). Students are asked to write down all the possible regions where a 

classical particle or a quantum particle could be found. The improved performance suggests that 

the students are more likely to understand that a quantum particle in either a bound or scattering 

state could be found in the classical forbidden regions. Questions A-3 and B-4 ask the students 

whether a quantum particle with energy E  incident from -¤=x  would be bounced back by a 

finite square well (question A-3 as shown in Figure 3.7) or a finite square barrier (question B-4 

as shown in Figure 3.12).  The results of questions A-3 and B-4 indicate that students have a 



 73 

better understanding of the fact that an incident particle has a finite probability of reflection even 

if its energy is higher than the maximum value of the potential energy well/barrier. A statement 

about the directional preference of the scattering state for a finite square well is used in both 

questions A-6 and B-6 as shown below. The instructor did not explain the pre-test questions to 

the students before they took the post-test and the students did not know that such questions 

would be asked again in their post-test. In the post-test, students showed better understanding of 

why the scattering state wavefunction for a finite square well can be symmetric without 

directional preference. They also sketched clearer graphs of wavefunctions to support their 

reasoning.  

Question A-6/B-6: Student A says that the scattering state wavefunction for an electron 

interacting with a finite square well can never be symmetric about the center of the well because 

the electron has to be launched from either left or right. Student B says that the scattering state 

wavefunction for a finite square well can be symmetric about the center of the well because the 

electron need not be launched from left or right. Explain why you agree or disagree with each 

student. Qualitatively sketch a wavefunction to support your answer. 

 

Figure 3.11 A particle with energy E interacting with a piecewise continuous potential energy well. 
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Figure 3.12 A particle with energy E incident from the left side of a finite square barrier. 

 

Table 3.1 The pre-test and post-test scores on each question. A and B represent the test version.  

Question A-1 A-2 A-3 A-4 A-5 A-6 B-1 B-2 B-3 B-4 B-5 B-6 

Pre-test  75% 94% 67% 89% 64% 56% 68% 61% 93% 50% 57% 43% 

Post-test 96% 92% 92% 83% 67% 79% 82% 97% 100% 76% 76% 91% 

 

Since the peer-instruction tools used in class before the pre-test may enhance studentsô 

performance in the pre-test, we administered the pre-test of bound and scattering state 

wavefunctions to another group of students (the comparison group) who had only received 

traditional instruction without using the concept tests and the QuILT. In the comparison group, 

15 students took Test A and 10 students took Test B after traditional instruction. The average 

score for all the 25 students in the comparison group is 41%. The comparison group studentsô 

average score on each question is listed in Table 3.2. By comparing the studentsô pretest scores 

after using the peer-instruction tools (as shown in Table 3.1) with the comparison groupôs scores 

(as shown in Table 3.2), we can infer that the concept test reduced studentsô difficulties in some 

issues related to bound and scattering state wavefunctions. For example, the multiple-choice 

question B-3 asks the students whether a 1D finite square well allows bound states or scattering 

states. In the comparison group, only 50% of the students knew that both bound and scattering 

states could exist for a 1D finite square well and many students mistakenly believed that only 
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bound states were allowed. Question A-4 requires the students to judge the state of a particle 

with energy E  interacting with a higher potential energy barrier as shown in Figure 3.6. More 

than half of the comparison group students incorrectly believed that the particle is in a bound 

state when the energy is lower than the maximum value of potential energy. In question A-2 we 

asked the students to sketch the energy levels of the bound states and scattering states for a 1D 

finite square well. The comparison group students had difficult ies in realizing that the energy of 

the particle cannot be lower than the minimum value of the potential energy. Also some students 

in the comparison group did not understand that the scattering states are energy eigenstates with 

definite energy value. A student sketched a classical scattering situation such that an incident 

particle was reflected when hitting the potential energy well (as shown in Figure 3.13). Another 

student claimed that the scattering state requires a potential energy barrier instead of a potential 

energy well and sketched a plot as shown in Figure 3.14.  

 

Figure 3.13 A student in the comparison group incorrectly  sketched a classical scattering situation to 

represent the energy level for a quantum scattering state.  

 

Figure 3.14 A student in the comparison group believed only the energy barrier allows a scattering 

state and he sketched a classical scattering situation to represent the energy level for the quantum scattering 

state. 
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Table 3.2 The control group scores on each question. A and B represent the test version. 

Question A-1 A-2 A-3 A-4 A-5 A-6 B-1 B-2 B-3 B-4 B-5 B-6 

After Lecture  60% 57% 7% 47% 50% 23% 55% 55% 50% 10% 50% 25% 

 

3.6 CONCLUSION 

We have investigated studentsô difficulties related to bound and scattering state wavefunctions 

for different quantum systems and used the findings as a guide to develop the QuILT related to 

bound and scattering state wavefunctions. Preliminary evaluation suggests that the QuILT about 

bound and scattering state wavefunctions is effective in improving studentsô understanding of 

these concepts. Comparison between the class using peer-instruction tools together with the 

lectures and the class having only traditional lectures suggests that the peer-instruction tools can 

reduce studentsô difficulties about bound and scattering state wavefunctions. 
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4.0  IMPROVING STUDENTSô UNDERSTANDING OF DRAWING ENERGY 

EIGENFUNCTIONS  

4.1 ABSTRACT 

In this chapter, we describe the difficulties students have with drawing the energy eigenfunctions. 

We also discuss the development and implementation of a research-based Quantum Interactive 

Learning Tutorial (QuILT) to reduce these difficulties. The preliminary evaluation shows that the 

QuILT about drawing the energy eigenfunctions is effective in improving studentsô 

understanding of the concepts related to the shape of the energy eigenfunctions. 

4.2 BACKGROUND  

As stated by the correspondence principle, when the energy of a quantum system is high enough, 

the behavior of the quantum system is close to the corresponding classical system. Therefore, we 

can use a semi-classical approach to qualitatively analyze the shape of the energy eigenfunctions 

with high energy levels. In the semi-classical approximation, the kinetic energy K  for a particle 

in a quantum system is given by )(xVEK -=  where E  is the energy eigenvalue (total energy) 

and )(xV  is the potential energy of the system. The shape of the energy eigenfunction depends 
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on the value of the kinetic energy K . In the regions where the kinetic energy K  is negative 

( 0<K ), the energy eigenfunction decays as kxe-  in which the magnitude of the wave vector k   

is defined by 

 
>

Km
k

2
=  ( m  is the mass of the particle and >is reduced Planckôs constant). (Eq 4.2) 

In the regions where the kinetic energy K  is positive ( 0>K ), the energy eigenfunction is 

oscillatory. In order to qualitatively sketch the oscillatory energy eigenfunction, we need to know 

the wavelength of the wavefunction. The wavelength of an energy eigenfunction can be 

expressed by the de Broglie relation p/2 >pl=  where the magnitude of the momentump  for 

the quantum system is proportional to the magnitude of the wave vector k , i.e.,  

 mKkp 2==> . (Eq 4.2) 

Therefore, the higher the kinetic energy K , the shorter the wavelength l.  

If the kinetic energy K  is positive, the relative amplitude of the oscillatory energy 

eigenfunction in different regions can also be determined by the semi-classical approximation. In 

the regions where the kinetic energy of the particle is larger, the momentum of the particle is 

larger so the particle moves ñfasterò. Therefore, the particle will spend less time in the region 

with higher kinetic energy K  and the probability of finding the particle in that region is lower. 

Since the absolute square of the amplitude of the wavefunction 
2

)(xy represents the probability 

density of finding the particle at the position x , the absolute value of the amplitude of the 

wavefunction )(xy  must be lower in the region where the kinetic energy is higher.  
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4.3 INVESTIGATION OF STU DENTôS DIFFICULTIE S 

In these investigations, our goal was to examine studentsô difficulties with drawing the energy 

eigenfunctions after traditional instruction so that we can devise strategies to improve studentsô 

understanding. The investigation of studentsô difficulties with drawing the energy eigenfunctions 

was carried out by administering written surveys to many advanced undergraduate and graduate 

students enrolled in quantum mechanics courses and by conducting individual interviews with a 

subset of them. We used open-ended questions to probe studentsô difficulties by explicitly asking 

them to sketch the energy eigenfunctions for a given quantum system. The individual interviews 

were conducted using a think-aloud protocol (Chi 1994). In the think-aloud interviews, students 

were asked to verbalize their reasoning process and not interrupted unless they remained silent 

for a while. At the end of the interview, they were asked to explain the issues which they had not 

clarified earlier. 

4.3.1 Difficulties related to the position of the 0)( =xy  axis 

If the total energy E  of the particle is higher than the potential energy )(xV , the energy 

eigenfunction is oscillatory about the x-axis of the )(xy  vs. x  plot. On the other hand, if the 

total energy E  is less than the potential energy )(xV  at plus/minus infinity, the energy 

eigenfunction decays to 0)( =xy  at plus/minus infinity. However, some students have 

difficulties in distinguishing between the vertical axis of the potential well (which has the units 

of energy) with the vertical axis of the wavefunction so they may shift the position of the 

0)( =xy  axis when sketching the energy eigenfunctions. For example, in a survey question, 
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students were given a potential energy diagram for a one-dimensional (1D) finite square well of 

width a  and depth 0V-  between ax¢¢0 . Students were asked to qualitatively sketch an 

energy eigenfunction with positive energy 0>E . A student incorrectly drew the wavefunction 

to be higher in the middle of the well as shown in Figure 4.1 and claimed that ñ(the wavefunction 

is) higher because some of the wave is reflected at the wallò. Similar mistakes also appeared 

when we asked the students to draw an energy eigenfunction with negative energy 0<E  for a 

1D finite square potential energy well. The wavefunction should oscillate about the axis 

0)( =xy  inside the well and decay to zero at plus/minus infinity outside the well. However, 

some students shifted the value of )(xy  about which it oscillates to 0)( >xy  inside the well 

even though they had noticed that the decaying axis outside the well was 0)( =xy .  

 

Figure 4.1 An incorrect sketch of an energy eigenfunction that oscillates about different axis. 

4.3.2 Difficulties related to decaying and oscillatory wavefunctions 

The energy eigenfunction should be oscillatory in the regions where )(xVE>  and decaying in 

the regions where )(xVE< . However, some students have difficulties in determining whether 

the energy eigenfunction is decaying or oscillatory in a given region. When we asked the 

students to draw an energy eigenfunction of a particle with energy 0>E  interacting with a 1D 
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finite square well of width a  and depth 0V-  between ax¢¢0 , some students incorrectly 

sketched decaying wavefunctions inside the well as shown in Figure 4.2. These students have not 

learned what one should observe when the potential energy )(xV  is lower in the well. Instead, 

they plotted a decaying wavefunction from rote memory that may correspond to a particle 

interacting with a potential energy barrier. Moreover, similar to the studentôs plot in Figure 4.1, 

the student who sketched Figure 4.2(a) incorrectly claimed that ñ(the wavefunction is a) typical 

particle wavefunction but lowered by potential wellò as though the oscillations on different sides 

of the well should be around different references. 

 

Figure 4.2 Incorrect sketches of an energy eigenfunction in a finite square well. 

For an energy eigenfunction with an energy eigenvalue )(xVE< , the higher is the 

potential energy, the faster the wavefunction decays. We asked 12 undergraduate students in a 

junior-senior level quantum mechanics course to sketch the energy eigenfunction for a particle 

with energy  interacting with a piecewise continuous potential energy well as shown in Figure 

4.3. Only half of the 12 students correctly noticed that the wavefunction should decay faster in 

region (III) than in region (I) since the potential energy is higher in region (III).  




























































































































































































































































































































































