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I. INTRODUCTION 

Scientists and engineers think mathematically about 
events, or mathematize, when making sense of the world. In 
introductory physics, we would like our students to become 
more proficient mathematizers. Recent findings, however, 
suggest that students experience difficulty with many aspects 
of how mathematics is used in physics [1-4]. 

The use of ratios to characterize systems and processes is 
a hallmark of physics and a foundation for mathematizing. 
Introductory physics courses present new ratio quantities in 
rapid succession, such as velocity, acceleration, and 
coefficient of friction in mechanics, electric field, potential 
difference, and resistance in E&M, heat capacity, frequency, 
and so on.  Students not facile with ratio reasoning may 
struggle to employ these quantities for sense making, and 
instead may resort to memorization and pattern matching [5]. 

Students entering university physics will have practiced 
with ratios in pre-college math classes and likely worked 
with ratios in scientific contexts. Physics educators, 
however, have recognized the challenge that ratio reasoning 
poses to student success in physics. Indeed, Arnold Arons 
wrote in 1990 “One of the most severe gaps in the cognitive 
development of students is the failure to have mastered 
reasoning involving ratios…this disability is one of the most 
serious impediments to the study of science” [5]. Physics 
education researchers have identified some difficulties more 
systematically; for example, Trowbridge and McDermott 
found that “fewer than half of the students demonstrated 
sufficient qualitative understanding of acceleration as a ratio 
to be able to apply this concept in a real situation” [6]. 

We view proportional reasoning as complex and multi-
faceted. Patrick Thompson has described proportional 
reasoning as a broad set of interconnected and context 
dependent skills, represented by a “proportionality cloud” 
[7]. He has shown how the equivalent ratios paradigm – the 
narrow skill from school mathematics involving “this is to 
this as that is to that” – overlaps with a variety of topics 
typically treated as separate. We believe that developing 
such interconnected skills in the context of explaining real-
world phenomena is central to “thinking like a physicist.” 
More specifically, we view expert ability as involving 
intentional use of distinct modes of ratio reasoning and fluent 
shifting from one mode to another. 

In this paper, we begin to unpack proportional reasoning 
from the perspective of an expert, by articulating specific 
modes of reasoning that arise in introductory physics. We 
refer to such modes as “natures,” following our earlier work 
on the natures of negativity in physics [8].  (“Natures of 
negativity” refers to the ways physics experts reason about 
signs and signed quantities.) Although the natures of 
proportional reasoning presented here are preliminary, and 
not yet comprehensive, we believe they can form the core of 
a more complete set, which could then guide research on 
student reasoning and the design of assessment tools. A 

mature set of natures of proportional reasoning would in this 
way support systematic improvement of instruction. 

II. THEORETICAL FRAMEWORK 

We adopt the view that expert practice in physics 
involves coordinated procedural and conceptual mastery of 
the relevant mathematics. In articulating natures of 
proportional reasoning, we have thus avoided focus on 
computation alone. Gray and Tall have defined proceptual 
understanding, in which computational and conceptual 
facility coexist [9]. We have found this notion useful for 
examining the ways that experts reason with ratios in 
introductory physics contexts.  

As an example, a proceptual understanding of fraction 
would entail fluid transition between the procedure of 
dividing 6 by 8, and the conceptualization of 6/8 as a precise 
quantification of portion. Similarly, a physics student with a 
proceptual understanding of acceleration would move 
between the computational procedure (dividing ∆v by ∆t) 
and the conceptualization of the ratio as a quantity unto 
itself, which conveys the change in velocity corresponding 
to each unit of the elapsed time, and has its own units, 
properties, and utility. We regard a proceptual understanding 
of ratios in physics as the successful blend of computational 
procedures and conceptual understanding – where 
conceptual understanding includes the physical meaning of 
a ratio – the way the quantity represents a physical quality. 

III. RESEARCH METHODS 

This paper presents natures of proportional reasoning in 
introductory physics – i.e., specific ways experts reason. We 
have conducted systematic research on student facility with 
these natures. We have employed a variety of questions to 
investigate student reasoning, some drawn from the research 
literature and others developed ourselves. The questions do 
not emphasize computational skill; most require neither a 
calculator nor significant mental math. Questions were 
designed to target a single nature of proportional reasoning.  
Some questions involve a forced choice (i.e., multiple choice 
format), while others are free response. In all cases, students 
were asked to explain their reasoning.   

The questions developed during the investigation 
underwent repeated cycles of modification. Student 
responses to initial versions were used to guide 
modifications to improve not only the clarity, but also the 
effectiveness of the questions in providing insights into 
student thinking. It was often challenging to create questions 
that did not trigger a common student response of trying to 
apply an equivalent fractions template. 

Questions were administered in writing in general 
education, algebra-based, and calculus-based introductory 
physics courses at Western Washington University (WWU), 
New Mexico State University, and Rutgers University. Such 
questions were given on course exams and as ungraded 
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quizzes. More than 1500 student responses have been 
collected overall.    

Questions were also administered in individual, one-
hour, think-aloud interviews conducted at WWU with over 
20 student volunteers from general education and calculus-
based introductory physics courses as well as an introductory 
physics course for preservice elementary teachers. A semi-
structured protocol was used: the interviewer posed specific 
proportional reasoning questions and asked the interview 
subject to “think out loud.”  The interviewer clarified the 
questions as needed, prompted the subject to explain their 
thinking after sustained periods of silence, and asked the 
subject to elaborate on brief or unclear statements. The 
interviewer did not, however, offer hints or ask guiding 
questions. The interviews were videotaped and transcribed. 

Responses on forced choice questions have been 
analyzed to obtain correct response rates; these results serve 
as an indicator of the general level of student facility with 
specific modes of ratio reasoning. (However, discussion of 
variations in performance between student populations is 
beyond the scope of this paper.) Thematic analysis has been 
applied to written explanations and interview transcripts to 
identify common reasoning difficulties [10]. Section IV 
shares selected findings from both types of analysis.        

IV. NATURES OF PROPORTIONAL REASONING 
IN INTRODUCTORY PHYSICS 

Here we present three natures of proportional reasoning 
in introductory physics, describing each and briefly sharing 
selected results of research on student facility. (We hope to 
share more details of our research findings in future 
publications.) In articulating the natures, we draw on prior 
work in physics and math education, as well as our own 
collective teaching experience. We view these natures as a 
foundation on which to build a more complete framework.  

The first two natures – verbal interpretation of a ratio and 
construction of a ratio from constituent quantities – are 
closely related under the overarching construct of unit rate. 
The third nature – application of a ratio to determine an 
unknown amount – may in some sense represent a higher 
order skill, i.e., a mode of reasoning that is supported by the 
first two natures. Articulating specific natures helps to 
operationalize proportional reasoning ability and can guide 
the development of tools for assessing fluency. 

These three natures, discussed in detail in sections A.1, 
A.2 and B below, are broadly consistent with the 
proportional reasoning learning targets identified in the 
Common Core State Standards for Mathematics [11]. For 
example, the standard “Understand the concept of unit rate 
a/b associated with the ratio a:b and use rate language in the 
context of a ratio relationship” aligns closely with verbal 
interpretation of ratios (see A.1). We do not claim that 
students consciously marshal these natures of reasoning 
when solving problems, or that the natures stem from 
isolated cognitive entities or form a coherent basis for 

modeling cognition.  Rather, they are presented as a practical 
guide for assessment and the development of instruction. 

A. Natures related to unit rate 

Verbal interpretation of ratio and the construction of a 
ratio constitute complementary natures of proportional 
reasoning about unit rate. Indeed, these two reasoning modes 
are in some sense inverses of one another. Verbal 
interpretation of ratio requires students to “translate” a given 
ratio-based quantity into everyday language in order to 
express the specific information the quantity provides about 
a system or process. For example, if the speed of a certain 
uniform motion is known to be 50 mph, a student can 
interpret the number 50 to recognize that the object travels 
50 mi for each hour of the motion. A general notion of equal 
sharing of two quantities (i.e., that equal increments of the 
elapsed time correspond to equal increases in the distance 
traveled) is here quantified in a specific way through 
“translation” of the technical term “per” as “for each.”  

Conversely, ratio construction asks students to use two 
constituent quantities to construct a mathematical expression 
that corresponds to a given verbal description.  For example, 
if the student is told that a car travels 240 miles in a 6-hr trip, 
and is asked to determine how many miles the car travels in 
each hour of the motion, she could construct the ratio 240/6. 

1. Verbal interpretation of ratio 

We regard the verbal interpretation of ratios as a 
foundation for proportional reasoning in physics. Such 
interpretation involves an internalized conception of the 
physical meaning of a ratio quantity, separate from but 
complementary to the recall and application of the formal 
mathematical definition.  For example, an expert not only 
knows that the heat capacity C is computed from the ratio 
Q/∆T, but also conceptualizes C as the heat transfer 
associated with a 1-degree temperature change. For an 
expert, the verbal interpretation is part of an associative 
network of ideas surrounding the ratio quantity, readily 
activated along with the formula or other representation. 
Furthermore, when confronted with a novel quantity, the 
expert looks for a relevant interpretation, actively seeking 
physical meaning. While physics experts move fluidly 
between mathematical definitions and physical 
interpretations, introductory students may instead resort to 
memorized patterns of manipulation [12, 13]. 

Arnold Arons has written extensively on verbal 
interpretation of ratios. He notes that even after relevant 
instruction, students may be unable to interpret density as the 
number of units of mass for each unit of volume, or 
acceleration as the change in velocity for each unit of the 
elapsed time, and in general may use “per” without 
understanding its meaning as “for every” [5]. In a study 
involving Nigerian high school students, Akatugba and 
Wallace found that students frequently relied on algorithmic 
methods they could not explain [14]. Simon and Blume point 
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out that students presented with a ratio quantity often fail to 
recognize it as derived from measurement [15]. For example, 
when asked to interpret a road sign “6% grade,” students 
explained that truck drivers might assign this number to a hill 
in much the same way that a subjective, numerical rating is 
assigned to a river rapid by expert kayakers. The students did 
not seem to recognize that the grade refers to the number of 
feet of change in elevation for each 100 feet of distance along 
the road – or even that the numerical value does in fact have 
a specific meaning which can (and should) be sought. 

We have used a variety of written questions to probe 
student ability to interpret ratios in physics contexts. On one 
such question, the Porsche question, students are told “On 
its website, Porsche states ‘Maximum:  21 mph per second’ 
in the technical specifications for a particular model” and are 
asked to “Describe the information this statement provides 
about the car, and explain the meaning of the word ‘per’ in 
this situation.” This task has been administered in written 
form in introductory calculus-based mechanics courses at 
multiple institutions. Many students had difficulty 
interpreting “per second” as “in each second.” (We note that 
many students struggled to distinguish velocity and 
acceleration, but do not discuss such difficulties here.) Some 
students recognized that the term per signals a relationship 
between two quantities, but did not articulate the essential 
aspect of proportion: “The overall per second parameter . . 
. is a time interval in which the car completed its task or 
whatever is being tested. ‘Per’ specifically relates the car’s 
performance to time in this situation.” This response seems 
to identify 21 as a change that occurs over time, but not as 
the change that occurs in a unit time. The specific 
interpretation of the numerical value, that each second 
corresponds to a change in velocity of 21 mph, has not been 
explicitly articulated, and may not have been internalized. 

We have also administered questions that ask students to 
interpret non-standard ratios. For example, the Inverse g 
question asks students to interpret the ratio quantity 0.1 s2/m, 
used to describe the motion of a falling object. The quantity 
0.1 is “non-standard” in that it is not a named quantity, and 
appears rarely if ever in physics text books. (Indeed, it is the 
inverse of the acceleration ratio featured in the Porsche 
question.) Although it does not have a common name, 0.1 
can be interpreted as the number of seconds required for each 
1 m/s change in the falling object’s velocity. We have posed 
this question in informal settings to physics faculty and 
graduate students. While they tend to express surprise or 
puzzlement initially, they generally arrive at a correct 
interpretation, often using units as a guide to their reasoning 
(i.e., experts often recognize that 0.1 s2/m can be recast as 
0.1 s per m/s). In contrast, we have found the Inverse g 
question to be very challenging for introductory students, 
with only around 10% giving a correct interpretation at the 
end of a calculus-based mechanics course. While perhaps not 
surprising, this result suggests that the reasoning needed to 
interpret an unfamiliar ratio in context may not be readily 
accessible for many students. 

2. Construction of ratio 

We have administered a variety of tasks to probe the 
ability of students to construct a ratio that corresponds to a 
given verbal description.  These tasks are, in a sense, the 
mirror image of the Porsche question presented above.  
Consider, for example, the Bobbing block question. This task 
involves a block suspended by a spring that bobs up and 
down in a repeating motion. Students are told that B bobs 
occur in 10 seconds, and are asked to write an expression for 
the number of seconds required for a single bob, and to 
explain their reasoning. We expected students to produce the 
expression 10/B.  When given to over 500 students in 
multiple sections of general education introductory physics 
at WWU, and over 500 additional students in calculus-based 
mechanics at Rutgers University, between 45% to 60% of 
responses included the correct expression 10/B. Nearly all 
remaining responses gave the inverse of this expression (i.e., 
B/10). Thus, while most students recognized that the correct 
response involves a ratio (rather than a difference or 
product), many seemed to have difficulty constructing the 
ratio that matches the given verbal description. 

One general education physics student who gave the B/10 
response seemed to be answering a question different than 
the one asked: “The number of bobs in 10 sec is B, B divided 
by 10 would give you bobs per a second.” Rather than the 
period, this response is consistent with the frequency of the 
periodic motion. Another student explicitly acknowledged 
the period as the desired quantity, but still arrived at the 
incorrect answer B/10: “To find the time it takes for a bob 
we have to divide the number of bobs B by 10 seconds.” 

To explore student thinking in more depth, we have used 
tasks like the Bobbing block question in individual, think-
aloud interviews. In this setting, which allows for follow up 
questions to probe whether difficulties are surface level, 
associated with careful reading of text and interpretation of 
wording, or deeper level, associated with underlying 
reasoning, we have found that some students struggle in a 
sustained way to distinguish the expressions B/10 and 10/B, 
despite repeated prompts to ensure that the question was 
being interpreted as intended.  In the interviews, some 
students exhibited an intuitive tendency to focus on rates of 
change with respect to time, rather than the alternative ratio 
construction (i.e., the time required for one repetition). 

We have administered a variety of additional tasks that 
require students to construct a ratio from given 
measurements in order to match a desired interpretation. 
Results are similar to those from the Bobbing block question: 
many students provide the inverse of the expected ratio. 
Questions involving an unfamiliar target ratio (i.e., the 
volume of a homogeneous material required to make one 
unit of mass) tend to pose greater difficulty than more 
familiar ratios (the mass for each unit of volume). Although 
more prevalent among general education physics students, 
even calculus-based students exhibit difficulties of this type. 
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B. Application of ratio 

A ratio that characterizes a system or process allows 
quantitative predictions to be made about cases not yet 
observed. For example, the value of electrical resistance 
expresses an invariant relationship between changes in the 
current and voltage for a linear resistor – in which a quantity 
of Ohms is the number of volts needed for each amp of 
current. Knowledge of the resistance then allows a prediction 
of the current that will result from any applied voltage. 

Applying a known ratio in this way involves essentially 
the same procedural skill as constructing a ratio: the 
equation I = V/R can be used to find the current from a 
measured voltage, or can be rearranged to find the resistance, 
given measurements of the voltage and current. Here, 
however, we treat application and construction of ratio 
as separate natures of proportional reasoning. Indeed, the 
form of quantitative reasoning that underlies applying a ratio 
is distinct from that underlying constructing a ratio. When 
dividing two quantities to form a ratio, we can imagine 
splitting the numerator quantity into equal-sized pieces, a 

rationale referred to as partitive division. When division is 
used to apply a ratio, however, one seeks to segment some 
total in units of size specified by the ratio, a 
conceptualization referred to as quotative division [16]. 

The application nature of proportional reasoning is 
ubiquitous in introductory physics; examples include the use 
of density to find mass and the use of velocity to find 
displacement. To examine student ability to apply ratios, we 
have developed tasks that differ in contextual features, but 
can all be solved with quotative reasoning. Two such tasks 
are shown in Fig. 1. The Traxolene question (Fig. 1.a) 
involves a typical introductory physics context, but a non-
standard ratio (i.e., cm3/g rather g/cm3). The Olive oil 
question involves an “everyday context.” When 
administered to over 500 students in calculus-based 
mechanics at Rutgers University, correct response rates were 
comparable: 66% on Traxolene and 61% on Olive oil. These 
results suggest that some university physics students have 
difficulty applying a known ratio to find an unknown 
amount, perhaps particularly if the ratio is unfamiliar. 

 

 
FIG. 1. Questions designed to assess student facility with application of ratio. 

V. CONCLUSIONS 

During a yearlong introductory physics course, students 
encounter many ratio and product quantities. Lack of facility 
with ratios may push students toward rote use of formulas, 
unable to apply proportional reasoning to guide sense 
making.  We are developing a set of natures of proportional 
reasoning to delineate the specific ways that experts reason 
with ratios in introductory physics contexts.  This paper 
presents three such natures: verbal interpretation of a ratio, 
construction of a ratios, and application of a ratio.  We 
expect these will form the core of a more comprehensive set. 

Prior work led to development of a validated framework 
for the natures of negativity in introductory physics. This 
framework provides a comprehensive road map for the 
reasoning sub-domain involving the interpretation of signs 
and signed quantities in introductory physics contexts. Such 

a map, in turn, serves as a practical guide for the 
development of assessment questions that can reliably track 
student progress and evaluate the effectiveness of 
instruction. We are currently using the framework for the 
natures of negativity to help us develop a Physics Inventory 
of Quantitative Literacy (PIQL), which includes assessment 
questions for student facility with negativity.  Our goal is to 
develop the PIQL into a valid, reliable, and easy to use 
assessment of mathematization in physics more broadly 
[17]. A validated framework for proportional reasoning will 
contribute to this effort. 
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a. Traxolene question: 
You are part of a team that has invented a high-tech material called “traxolene.”  Each gram of traxolene has a 
volume of 2.2 cubic centimeters.  For an experiment, you are working with a piece of traxolene that has a 
volume of V cubic centimeters.  To figure out the mass of this piece of traxolene (in grams), you should: 
a.  divide V/2.2      b.  divide 2.2/V       c. multiply V•2.2         d. none of these 
b. Olive oil question: 
You go to the farmer’s market to buy olive oil.  When you arrive you realize that you have only one  
dollar in your pocket.  The clerk sells you 0.26 pints of olive oil for one dollar.  You plan next week to buy P 
pints of olive oil.  To figure out how much this will cost (in dollars), you should: 
a.  divide P/0.26      b.  divide 0.26/P       c. multiply P•0.26         d. none of these 
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