


Question S: Using the generalized uncertainty principle,
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Question L: Consider a particle along a ring (with V = 0)
with the state:
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a. What is the lowest possible value of �L̂x�L̂y for

this state? (Recall that �Â�B̂ � 1
2 |h[Â, B̂]i|.)

b. Reflect on your answer and, in a sentence or two,
comment on why it does (or does not) make sense.

FIG. 1. Two problems based on the generalized uncertainty princi-
ple that were given to students in upper-division quantum mechanics
courses. Question S was given to students at CSUF and CU Boul-
der on a midterm examination. Question L was given to students at
CSUF on an in-class quiz the following semester.

B. Context for Research

Over the course of two semesters, we asked students en-
rolled in upper-division quantum mechanics to solve two
questions based on the generalized uncertainty principle. The
data were collected at two institutions: California State Uni-
versity, Fullerton (CSUF) and the University of Colorado
at Boulder (CU Boulder). The instructors for both courses
taught the first semester of upper-division quantum mechan-
ics using the spins-first method. The same textbook [6] was
used for both classes, and both courses used similar inter-
active materials (clicker questions and tutorials). Data were
also collected from the second semester quantum mechanics
course at CSUF that was taught by the same instructor using
the same textbook. The main difference between these two
institutions is the student populations; CU Boulder is a re-
search intensive, selective institution and CSUF is a teaching-
focused, masters-granting, Hispanic-serving institution.

We asked two different, although similar, questions on ex-
ams at CSUF and CU Boulder. Both questions are illustrated
in Figure 1.

Question S was given on examinations at both CSUF
(NF = 22) and CU Boulder (NB = 41) and is in the con-
text of spin angular momentum operators (Ŝx, Ŝy , and Ŝz).

Question L was given on an in-class quiz at CSUF (NF =
18) during the second semester quantum mechanics course.
It is very similar to Question S, except it is in the context of
orbital angular momentum operators (L̂x, L̂y , and L̂z). An
additional difference between the two questions is that the
state given in Question L was written in two different nota-
tions: position-space wave functions and Dirac notation. This
allows us to see which notation students chose to use when
solving for the expectation value. We also added a second
part to the question in which students were asked to reflect on
their answer. Note that Question L asks for the lower bound
of ∆L̂x∆L̂y in a context where the angular momentum is

constrained to be in L̂z . We did not see any evidence that this
affected student responses.

III. RESULTS

While the questions we asked required students to solve
for multiple mathematical tools, in this paper we focus solely
on the expectation value. We analyze components of student
responses for the four categories in the ACER framework:
activation, construction, execution, and reflection. We report
trends that were found in each category. Note that not all
students are represented in the data set for each section. Re-
sponses for each category were only considered if the student
attempted the relevant part of the question. For example, if a
student did not attempt to execute the mathematics, they were
not included in the execution data set.

A. Activation of the Tool

Activation of the tool involves recognizing what mathemat-
ical tool(s) are required in order to solve the problem. Our
questions ask students for the lower bound of the product
of two uncertainties. We intended to focus on the activation
of the expectation value tool; however, in order for students
to arrive at the expectation value component of the question,
they must choose to evaluate the right hand side of the gen-
eralized uncertainty relation (∆Â∆B̂ ≥ 1

2 |〈[Â, B̂]〉|). When
analyzing the data we quickly discovered that it was not clear
to all students which side of the expression to evaluate. In this
section we focus on the activation of an additional mathemat-
ical tool, the lower bound, since it is a necessary step in order
to get to the expectation value component of the problem.

Question S: In this question, activation of the tool proved
difficult for students, with only 72% (16 of 22) of students at
CSUF and 83% (34 of 41) of students at CU Boulder attempt-
ing to solve the right hand side of the relation. Other students
either solved the left hand side of the relation (three at CSUF
and six at CU Boulder) or left the question blank. Addition-
ally, there were several students (five at CSUF and one at CU
Boulder) that started solving the right hand side, but before
reaching the expectation value component they switched to
solving the left hand side. Note that in this question, the two
sides of the generalized uncertainty expression are equal, but
this is not always the case.

Question L: Similar issues with activation were found in
response to Question L, with 83% (15 of 18) of CSUF stu-
dents correctly identifying that the right hand side needed to
be solved. Most of the students that responded to this ques-
tion also answered Question S in the previous semester, and
this may be the reason more CSUF students activated cor-
rectly. The remaining three students either didn’t attempt the
problem or attempted to solve the left hand side.



B. Construction of the Model

For our questions, construction of the model involves
choosing a representation and a method to solve the prob-
lem. We look at the representations chosen through the lens
of structural aspects of quantum notations [4]. In our ques-
tions, the representations and the methods used to solve for
the expectation value are linked. The methods for solv-
ing for the expectation value are: the summation method
(〈Â〉 =

∑
piλi, where pi are the probabilities correspond-

ing to the eigenvalues λi of the operator Â); direct integra-
tion (

∫
ψ∗(x)Âψ(x)dx); Dirac notation (from the equation

〈Â〉 = 〈ψ|Â|ψ〉, with the use of eigenequation and orthog-
onality conditions); and matrix multiplication. In our analy-
sis, we look for correct construction of the expectation value,
as well as which method was used. We only consider re-
sponses from students that attempted to solve for the expecta-
tion value; that is, we only consider students that activated
correctly (as described in the previous section). Students
were considered to have correct construction if they set up
the solution correctly, meaning they expressed the states and
equations accurately in the representation of their choice.

Question S: In response to this question, students used one
of two methods to solve for the expectation value: the sum-
mation method and matrix multiplication. The summation
method can be seen as simplest method for this problem be-
cause the probabilities and eigenvalues were readily avail-
able, since the state was written in the Ŝz eigenbasis. De-
spite this, only three students at CU Boulder (and none at
CSUF) used the summation method, as seen in Table I. Eight
students at CSUF and two students at CU Boulder did not
use either method as they either stopped solving the problem,
made a mistake, or switched to solving for the left hand side
of the equation before choosing a representation. The most
common error in construction was a missing constant.

Question L: Students used three different methods to solve
for the expectation value in this problem: the summation
method, Dirac notation, and direct integration in the posi-
tion representation. Because we provided the quantum state
in both position representation and Dirac notation, students
needed to decide which representation to use. This con-
tributed to their choice of method when solving for the expec-
tation value. Table II shows the number of students that chose

Method (Question S) CSUF (N = 16) CU Boulder (N = 34)

Summation 0 3
Matrix Multiplication 8 30
No method 8 2

TABLE I. The number of students, broken apart by institution, who
used each method to solve Question S. Note that students could have
used more than one method. No method refers to students who
stopped solving the question or made a mistake before they were
required to choose a method.

Method (Question L) CSUF (N = 15)

Summation 4
Integration 3
Dirac 3
No method 5

TABLE II. The number of students that used each method to solve
for the expectation value on Question L. No method refers to stu-
dents who stopped solving the question or made a mistake before
they were required to choose a method.

each method. All three of the methods were used by stu-
dents in relatively equal numbers. Of the five students that did
not select a method, two students claimed 〈L̂x〉 = constant,
without explanation. A further three students made an error
or stopped working through the problem before choosing a
representation.

The most common method to solve for the expectation
value was different in the two questions. While most students
used matrix multiplication in response to Question S, this
method is not practical for Question L. We found that equal
numbers of students worked in the position and Dirac repre-
sentations in Question L. Note that the summation method did
not require students to choose between these representations.

C. Execution of the Mathematics

Execution of the mathematics involves performing the
mathematical operations necessary to obtain a result. In this
section we again only look at the expectation value part of this
problem. Depending on the choice of representation, solving
for the expectation value can involve multiplying matrices,
using orthonormality conditions in Dirac notation, or evalu-
ating integrals. In this section we only consider students that
have activated the tool and attempted to construct the prob-
lem.

Question S: Out of the eight students at CSUF that at-
tempted to construct the problem, only three students exe-
cuted the problem correctly. At CU Boulder, most students
executed the problem correctly (28 of 32). The students that
executed the problem incorrectly were missing a constant fac-
tor (four at CSUF, one at CU Boulder) or had incorrect alge-
bra (one at CSUF, three at CU Boulder).

Question L: Out of the ten students that attempted construc-
tion, five had the correct execution of the mathematics. The
representation that had the most errors in execution was po-
sition space. Two of these students made errors involving
complex exponentials and two students stopped solving the
question or made an error before completing the computation.
When using Dirac notation one student left off the complex
conjugate of the wave function, solving for L̂z|ψ〉 instead of
〈ψ|L̂z|ψ〉.



D. Reflection on the Result

Reflection on the result involves making sense of the an-
swer physically, as well as checking for errors. Reflection
is an important aspect of problem solving and tends to be
present in experts’ solutions and absent from students’ solu-
tions [3]. While Question S did not explicitly ask students to
reflect on their answer, Question L was designed to examine
how students reflect on their answer when prompted.

Question S: Even though the students were not prompted to
reflect on their answer, one student at CU Boulder solved the
problem using two methods. While not a formal reflection,
this students took steps to check their final answer.

Question L: This question prompted students to reflect on
their answer. Even though some students did not finish the
problem, 16 of 18 students answered the reflection portion of
the question. The most popular response was that a non-zero
answer made sense due to the uncertainty principle of non-
commuting operators. The second most common reflection
was that the answer needed to be real.

Even though most of the students responded to the reflec-
tion part of Question L, there was no evidence that students
used this opportunity to meaningfully reflect on whether or
not their answer made sense. Rather, the students seemed to
use the reflection as an opportunity to justify their answer.

E. Limitations of ACER

The ACER framework focuses analysis on a single math-
ematical tool within a physics problem. However, in most
problems, there are multiple mathematical operations that
must be performed. In our question, for example, students
must determine a commutation relation and take the absolute
value of the result in addition to the two other mathematical
tools discussed earlier (the lower bound and the expectation
value). In order to get a complete picture of student responses
to our question, we need to expand our analysis to include the
other mathematical tools. We have included some patterns in
student responses below.

Absolute values: The final step to both questions is to take
the absolute value of the resulting complex number. We did
not expect students to have trouble with this; however, five
students at Fullerton and four at CU Boulder left an imaginary
i in their final answer on Question S. No students made this

error in Question L.
The commutator: Most students wrote the result of the

commutator either from their equation sheet or from memory
(28 of 50 for Question S and 9 of 15 for Question L). Most of
the students who solved the commutator did so correctly (22
of 50 for Question S and 2 of 15 for Question L); however,
we did not observe any patterns to the mistakes that students
made.

IV. DISCUSSION

In this study we used ACER in a novel way to purpose-
fully create questions that would highlight all four aspects of
the ACER framework. We found the activation and reflection
categories most challenging. In an attempt to write a context-
rich question, we introduced an additional mathematical tool
to the question: the lower bound. We did not expect students
to have trouble with this concept as we were not aware of any
physics education research literature on this topic. However,
we found it challenging for students and it was the main rea-
son students failed to activate correctly.

There were multiple methods that students could use to
solve for the expectation value. For Question S, almost all
students chose to work in the matrix representation, even
though it required more calculations than the summation
method. It is possible that students looked at the formula for
the expectation value and went straight to the matrix method
without recognizing that there was an alternate, maybe sim-
pler, method. In contrast, for Question L, students were
equally split between the three main methods.

We know that students rarely spontaneously reflect on their
answers [3]. We had hoped that an explicit prompt in the
question would help. However, there was little evidence that
students were meaningfully reflecting by using this as an op-
portunity to determine whether their solution was correct or
made physical sense. Rather, it appeared that most reflections
were simply a factual statement about their answer.

Future work will include performing student interviews as
well as analyzing the data using methods other than ACER,
in order to get a more in-depth look at student thinking, espe-
cially during activation and reflection.
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