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This study presents a new method for assessing the effectiveness of instructional resources using online learn-
ing technology that provides much richer information than a traditional summative assessment. By requiring
students to complete a sequence of problem solving and learning activities in a given order, this new method
not only measures students’ ability to directly transfer learning to a new problem, but also their ability to learn
from additional resources, or the “preparation for future learning” effect. We used this method to evaluate the
quality of two problem solving tutorials, and found that both tutorials significantly benefit transfer to nearly
identical problems, but only one facilitates transfer to a further distance. Moreover, we found evidence sug-
gesting that one tutorial prepared students with lower prior knowledge to learn as effectively from a following
worked example as students with higher prior knowledge.

I. INTRODUCTION

One of the major goals of physics instruction is to help stu-
dents develop a robust understanding of physics knowledge
and be able to transfer this understanding to solve problems
in a different context. However, selecting good transfer prob-
lems to assess the effectiveness of instruction can be a chal-
lenging task for instructors. If the problem is too similar to
the instruction, or in other words, if the transfer distance is
too small, then students may be able to solve it by rote mem-
orization or by using a plug and chug approach. If the trans-
fer distance is too large, then many students with moderate
learning gains may not be able to solve the problem. More
importantly, in many cases engaging with learning or prob-
lem solving activities may not directly lead to improvements
on transfer tasks [1, 2]. Rather, the benefit may be reflected
in so-called “preparation for future learning” (PFL), where
students are better prepared to learn more effectively from
follow-up instructional materials and perform better on future
transfer tasks [3].

The difficulty may be partly alleviated by including mul-
tiple problems at different transfer distances on the same as-
sessment, but this method also has several drawbacks. First,
longer exams may reduce students’ test taking effort, espe-
cially when used as a not-for-credit pre-test [4]. Second,
on summative assessments students receive no feedback on
their performance, and therefore a small mistake may lead to
wrong answers on all similar problems, especially in com-
puter graded multiple-choice assessments. Moreover, tradi-
tional summative assessments still cannot detect the effects
of PFL.

Modern online learning technology enables instructors to
design more creative forms of assessments that extend be-
yond the traditional definition of a “quiz” or an “exam.” On
one hand, students can be presented with a set of activities,
including both learning and problem solving, that they must
complete in a given order. On the other hand, students’ be-
havior data such as time-on-task can be combined with per-
formance scores to provide richer and more accurate informa-
tion on the state of their knowledge and skill. In this study,
we will utilize those advantages to design and test a new form

of assessment that aims at remediating the aforementioned
drawbacks of traditional summative assessments.

This new form of assessment is based on an online instruc-
tional design called Online Learning for Mastery (OLM) that
implements the “mastery learning” strategy [5] in an online
environment. The OLM design breaks down each topic into a
sequence of modules each containing both learning resources
and a short mastery test. Students can move onto the next
module after passing the mastery test of the current one, and
each student can proceed at their own pace through the se-
quence [6].

In the current study, we will assess the effectiveness of two
online physics problem solving tutorials [7, 8] using a se-
quence of three OLM modules. The design not only measures
students’ performance on direct transfer tasks, but also pro-
vides students with an additional opportunity to learn from
a worked example before attempting a second transfer task,
which can be treated as a simple form of PFL.

This exploratory study will seek to answer the following
research questions:

RQ 1. Can this new form of assessment provide richer infor-
mation on students’ learning than a single summative
assessment by measuring both direct transfer and PFL?

RQ 2. How do students’ learning efforts on the tutorial corre-
late with their performance on different problem solv-
ing tasks?

RQ 3. To what extent can students who learned from the tu-
torials perform at a similar level as those who already
knew how to solve this type of problem?

II. METHODS

A. Design of the OLM module sequence

Each OLM module contains an instructional component
(IC) and an assessment component (AC) (Fig. 1). A key fea-
ture of the design is that upon accessing a new module, stu-
dents are first required to make at least one attempt at the AC
before being given access to the IC. Each student can have
multiple attempts on the AC, and can move onto the next



FIG. 1. The design of an OLM sequence consisting of three mod-
ules. Students can move on to the next module if they pass the AC,
regardless of whether they have accessed the IC.

module whenever they pass the AC. On each new attempt,
a slightly different version of the assessment problem is pre-
sented to the student. After the initial attempt, students can
either study the IC or make additional attempts on the AC.
The IC of OLM modules can contain a variety of learning re-
sources including text, figures, videos, and practice problems
with hints and solutions. During each AC attempt the IC is
temporarily blocked from access.

Due to platform limitations, in the current study a student
can move on to the next module after making an attempt on
the AC of the current module. However, students were not ex-
plicitly informed of this fact, and were strongly encouraged to
complete one module (by either passing the AC or depleting
all available attempts) before moving on to the next module.
Almost all students followed this order.

B. Measuring transfer through a sequence of OLM modules

The structure of the three module sequence is illustrated in
Fig. 1. The ACs of all three modules (AC1 - AC3) contain one
problem each. The three problems, perceived by experts as
having similar difficulties, can be solved by applying exactly
the same physics equation(s), yet are very different in surface
features. The IC of the first module (IC1) contains the on-
line tutorial implemented as a sequence of practice problems,
teaching students how to solve the problem in AC1. The IC
of the second module (IC2) contains a detailed worked ex-
ample of the same problem used in AC2. IC3 is essentially
empty except for one sentence stating that no hint or solution
is given for this module.

We will refer to students’ attempts on AC1 and AC2 prior
to accessing IC1 and IC2, respectively, as “pre-learning” at-
tempts (or PRE for short), and attempts after accessing the IC
as “post-learning” (POST). Those attempts serve as de-facto
pre- and post-tests for IC1 and IC2. Note that we do not dis-
tinguish between the attempts on AC3 since IC3 is empty. As
students move through the modules in order, AC1-PRE serves
as the pre-test for the entire sequence, while AC1-POST mea-
sures students’ ability to solve an essentially identical prob-
lem after studying the tutorial, which can be viewed as trans-
fer at near “zero” distance. AC2-PRE serves as the first trans-
fer task, and AC2-POST examines students’ "zero-distance"
transfer from the worked example (IC2). For those students

who studied IC2, AC3 serves as a second transfer task that
measures the learning outcome from IC2. For students who
studied both IC1 and IC2, their performance on AC3 can be
seen as a measure of the PFL effect. We will refer to the three
modules as “Tutorial” (Tut.), “Transfer 1” (Trans.1), “Trans-
fer 2” (Trans. 2).

C. Study Setup

Two OLM sequences were created and assigned as part of
weekly homework for a college introductory physics course
on Newtonian mechanics at the University of Central Florida.
The IC1 of each sequence contained a research based inter-
active tutorial developed by DeVore and Singh [7, 8], which
guides students through solving a challenging problem on ro-
tational kinematics (RK) and conservation of angular mo-
mentum (AM), respectively. The student body consisted of
22% female students and 46% minority students.

Students received 2 points each for solving the problem in
AC1 and AC2, and received 1 point for solving the problem in
AC3. No credit was assigned for interacting with the IC. The
problem bank of each AC contained 4 isomorphic problems
that were different only by numbers. Each student was given
5 attempts on each AC, and on the 5th attempt the student
receive the 1st isomorphic problem for a second time.

The OLM modules were created and hosted on UCF’s
award-winning open source online learning objects platform,
Obojobo, developed by the Learning System and Technology
(LS&T) team at the Center for Distributed Learning [9]

D. Data Collection and Analysis

Student’s performance on AC1 and AC2 are divided into
four categories: 1. Pass on PRE: Students who pass within
two pre-learning attempts 2. Pass on POST: Students who
passed within two post-learning attempts. 3. Fail on POST:
Students who did not pass within two post-learning attempts.
4. Other: Other types of outcomes such as taking three or
more attempts on the AC before studying the IC. Few students
(∼10%) belong to the Other category.

Students’ performance on AC3 is divided into PASS (pass
within 2 attempts) and FAIL (pass outside of 2 attempts or
eventually failed).

Student’s interaction with the IC is captured by the dura-
tion of their longest study session (LSS). A “study session”
is the sum of all interactions with the IC that took place be-
tween two AC attempts. Only in about 5% of the cases did
a student make a second study session that was at least 30%
as long as the longest one. In those cases, the duration of the
second session was added to the first one and the AC attempt
in between was neglected.

III. RESULTS

The number of students who made at least one attempt on
the AC of each module is largely constant for both OLM se-
quences, as shown in Table I. To measure students’ problem
solving performance we plot in Fig. 2 the passing rates for



TABLE I. The number of students who made at least one attempt
on each AC.

Sequence Module Assessment N
Tutorial AC1 210

RK Transfer 1 AC2 209
Transfer 2 AC3 203
Tutorial AC1 202

AM Transfer 1 AC2 200
Transfer 2 AC3 200

each AC, distinguishing between PRE and POST attempts.
We included both Pass on PRE and Pass on POST in the pass-
ing rate of AC-POST, to reflect the total fraction of students
who were able to solve the AC problem after being given ac-
cess to the IC.

We compared the difference between each pair of passing
percentage using McNemar’s exact test. All POST attempts
have significantly higher passing rates than PRE attempts
(p < 0.05). For the AM sequence, both AC2-PRE and AC3
have significantly higher passing rate than AC1-PRE, but the
difference between those two are not significant. For the RK
sequence, the passing rate on AC3 is significantly higher than
both AC1-PRE and AC2-PRE (p < 0.05).

To understand how students’ learning time on ICs corre-
lates with their performance on subsequent AC attempts, we
first investigated the distribution of students’ learning time
(LSS duration). For the ICs of the first two modules in each
sequence, the distributions of LSS duration are not signifi-
cantly different from a log-normal distribution (Shapiro-Wilk
normality test), except for RK-IC1. For the current study, we
used a simple cut-off by labeling students with log LSS dura-
tion less than one standard deviation below the mean as “brief
learners” and the rest of the population as “normal learners”
(see example in Fig. 3).

We tested the correlation between students’ IC learning be-
havior (“brief” or “normal”) and their passing rate on fol-
lowing ACs using Fisher’s exact test. The resulting p-values
are listed in Table II. We note that IC learning behavior is
only significantly correlated with students’ performance on
AC-POST of the same module (except for AM-IC1 and AC1-
POST, which is marginally significant at p = 0.07). Cor-

FIG. 2. Passing rates for each AC on both OLM sequences.

TABLE II. p-values from Fisher’s exact test on 2×2 contingency ta-
bles measuring the correlation between study time (“brief” or “nor-
mal” learners for the ICs) and assessment outcome (“pass” or “fail”
on the ACs). Statistically significant results are bolded. ∗ indicates
p < 0.05 and ∗∗ indicates p < 0.01.

RK AM
AC IC1 IC2 IC1 IC2

AC1 PRE — 0.48 — 0.10
AC1 POST 0.03∗ 0.22 0.07 0.48
AC2 PRE 1.00 — 0.37 —

AC2 POST 0.75 0.00∗∗ 0.23 0.00∗∗

AC3 0.81 0.24 0.55 0.42

relation with performance on transfer or PFL tasks were not
significant.

To answer RQ3, we look at two groups of students who
interacted differently with the Tutorial modules: “Pass AC1-
PRE” are those who passed AC1 on pre-learning attempts and
skipped IC1, and “Pass AC1-POST” are the “normal learn-
ers” on IC1 who passed AC1 after learning. We plot their
performance on the following transfer task (AC2-PRE) and
the PFL task (AC3) in Fig. 4. In addition, we selected from
both groups those who are “normal learners” on the worked
example (IC2), and compared their performance on the PFL
task (AC3).

As shown in Fig. 4, in both sequences the students who
passed AC1 on pre-learning attempts still performed signifi-
cantly better than those who learned to solve AC1 from IC1.
The difference is much smaller on AC3 for the RK sequence,
but remains significant for the AM sequence. However, for
the two sub-populations who both studied IC2, the difference
in AC3 performance (PFL task) is much smaller.

IV. DISCUSSION

For both sequences, students had high success rates on
“zero-distance” transfer tasks (AC1-POST, AC2-POST). The
fact that normal learners significantly outperformed brief-
learners on those tasks further verifies that studying the tu-

FIG. 3. A histogram of the log-scaled LSS duration for RK-IC2.
The vertical bar (31 s) denotes one standard deviation below the log
mean for this module, which is used as a cutoff between the “brief”
and “normal” learners.



FIG. 4. Passing rates on AC2 and AC3, comparing students who
passed AC1 on PRE with those who passed AC1 on POST after
studying IC1. The third set in each sequence is plotted for a subset of
students who also studied IC2 and passed AC2-POST. Statistically
significantly differences are marked with *.

torial helped students learn to solve the particular problem
being taught. However, the impact of the tutorial on transfer
and PFL tasks is much smaller.

For the RK sequence, students’ passing rate on the first
transfer task is identical to that of the pre-test, while their
performance on the PFL task is significantly higher. However
the passing percentages on all three ACs are very low, and not
significantly different from a random guessing rate. Overall,
the results suggest that the RK problems are challenging for
the current student population, and that the tutorial alone did
little to facilitate transfer, which is consistent with previous
research [8].

For the easier AM sequence, students’ overall performance
on both transfer tasks (AC2-PRE, AC3) is significantly better
than on the pre-test (AC1-PRE), indicating that some students
were indeed able to transfer their learning to a new problem.
However, the performance of “brief-learners” are indistin-
guishable from that of the “normal-learners.” One possible
explanation is that students’ prior knowledge plays a more
important role in transfer tasks, since “brief-learners” on IC1
could include students with stronger prior knowledge who
only needed to skim through the tutorials. This explanation

is also supported by the fact that those who could pass AC1
before learning the tutorial (strong prior knowledge) consis-
tently performed better on both transfer tasks than those who
learned how to solve AC1 from the tutorial (Fig. 4). Finally, a
noteworthy observation is that on the PFL task (AC3), those
who studied both the tutorial and the worked example per-
formed similarly to those who passed AC1 on pre-learning
attempts and only studied the worked example. This could
imply that studying the AM tutorial prepared students with
weaker prior knowledge to learn from the worked example
as much as their peers with stronger prior knowledge. Addi-
tional future studies are needed to verify this implication.

Overall, we found that the three-module design can pro-
vide richer information than a single summative assessment
using either one of the AC problems or all three problems
together. With this design, we can not only detect the perfor-
mance difference between near and far transfer tasks, but also
detect more subtle benefits of the tutorial on PFL tasks. The
incorporation of students’ learning time as part of the analysis
further improves the reliability of this assessment method.

Finally, there are a few shortcomings in the current study
that should be addressed in future studies. First, we assumed
that the three AC problems in the same sequence have similar
difficulties based on expert opinion. This needs to be verified
in future studies by switching the order of the problems. Sec-
ond, we did not account for the effect of answer copying or
random guessing behavior among students, which can have
an impact on the results. Future studies can either be con-
ducted in a proctored setting, or exclude students who spent
an unusually short time answering the AC problems [10].
Third, a few students studied the IC after passing the AC on
some modules. Although there were only a couple of cases,
they should be properly considered in more careful analysis
in the future.
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